
The ATA Servo Loop
G. R. Harp

11/1/6

Abstract
Here we document some of the details of the antenna tracking software (servo loop). The

servo loop consists of two parts – estimation of the current antenna position and
evaluation of the antenna velocity setting to optimize response. The antenna position

estimation is done with a Kalman filter applied to encoder readings. The control
parameter (velocity setting) is evaluated with a PDFF (position, velocity, velocity feed

forward, acceleration feed forward) algorithm fed from a low pass prefilter.

Introduction
To achieve optimal ATA performance we require a good pointing model so that we can
tell the antennas where to point with high accuracy. But that isn’t enough; we also need a
high quality feedback mechanism to keep the antenna stably pointed in the correct
direction. In cases where we wish to image a large field of view (FOV), we also require
the antenna to move nimbly from one pointing to the next, so we can cover a large area
while minimizing settling time. This document focuses on the feedback loop presently
used in the ATA antenna (note date above). We begin with a discussion of some
parameters that constrain the servo loop, such as the encoders and antenna mechanics.
We then describe the algorithms for position estimation and calculation of feedback
parameters used to drive the antennas in real time.

Constraints
Lowest Antenna Resonant Frequency
It is fairly easy to make a good estimate of the lowest resonant frequency of the antenna
mechanics. Mike Davis and Rick Forster drove antennas by hand, feeding back the
strongest resonance with vigorous shaking. By counting the number of oscillations over
some seconds and dividing by the time, they found the antennas resonate at about 3 Hz in
both azimuth and elevation. This is the lowest frequency resonance, and although higher
resonances exist we can avoid exciting any resonance by filtering the servo drive
commands to avoid all frequencies near 3 Hz or above. This is a low-pass filter.

Incremental Encoders
The ATA antennas employ directly-coupled, incremental encoders with an encoder step
size of 9 arc seconds. These encoders are read by dedicated hardware on the control
board (designed by Rob Ackermann), and encoder readings are issued from this board at
a rate of 10 Hz to the control software.

Antenna Velocity Drives
The antenna is moved with DC motors driven by Copley servo amplifiers. Although the
Copley drives contain their own slew of servo controls and software, we don’t use this
functionality because the servo loops are too “tight” to be useful. We want telescope
feedback on the scale of seconds, and indeed wish to avoid driving the 3 Hz resonant
mode of the antennas.

The maximum slew speed of the Azimuth drives is nominally 4°/s. Some antennas are
observed to stall at this speed, so the software limits the Azimuth velocity to 3°/s. We
expect that this mechanical problem will be fixed eventually, and the software limit will
be raised at that time. The elevation velocity is presently limited to 1°/s.

The servo drives are controlled by sending step pulses to the Copley amplifier. This is the
same interface used by the old, stepper motor drives. We decided to stick with this
interface because it provides versatility for the future. The control steps are very small, so
there is no limitation introduced by the stepper interface (see table).

Useful constants
Az Degrees per Servo pulse 1.8803 E-04
El Degrees per Servo pulse (12.925e-4 * el_degrees + 0.411459) / 5000
Encoder Degrees per encoder step 0.00625

Position Estimation: The Kalman Filter
The control board generates values for the antenna position in azimuth and elevation at a
rate of 10 Hz. The 9 arc second encoder resolution provides one limitation on our
position estimate. Theoretically, one can beat this resolution limit by interpolating
between encoder “ticks” based on recent estimates of the antenna velocity. Velocity
measurements are limited not only by the encoder resolution but also by our estimate of
when the encoder ticks occur. In practice this is limited to about 0.1 second by the
reading rate mentioned above.

To estimate the position, we need a theoretical model of the antenna motion, even if it is
very simple. For example, we could model the position as a random walk, where the size
and direction of the next step is completely uncorrelated with the size and direction of the
last step. The reason our model incorporates randomness or noise, is that A) the antenna
is subject to external forces like wind, and B) the antenna is subject to the whims of the
astronomer, who may decide to point in a completely different direction at any time. Thus
a random walk is the simplest possible nonstationary motion model. However, we expect
the antenna has inertia, so we look for a model that incorporates this fact.

One way to introduce inertia is to integrate a random walk. More specifically, we suppose
the antenna has a certain mass and suffers random, Gaussian-distributed momentum

impulses. Or following the physics of random winds, we might suppose the antenna
suffers Gaussian-distributed forces (acceleration impulses). Other models are possible.

Once we have chosen our model, we may implement the model in a Kalman filter. The
brilliance of Kalman’s result is that, given a set of time-ordered measurements and a
parameterized (linear) model, the Kalman filter gives a least squares best estimate of the
model parameters. Many least-squares techniques exist, but Kalman’s prescription allows
us to apply measurements incrementally as they come in, always maintaining the present
best estimate. We won’t discuss how it works here, but we have found to be very useful
the book, “Kalman Filtering: Theory and Practice”, by M. S. Grewal and A. P. Andrews.

We compare two Kalman filter implementations corresponding to the random momentum
impulse (2 parameter filter) or random acceleration impulse models (3 parameter filter).
These two implentations are driven with numerically-generated sinusoidal position values
(that simulate the kind of trajectory accelerations we intend to track) with realistically
simulated encoder noise. Here we’re optimizing for the “no wind” case.

The first graphs show tracking of position, velocity, acceleration, and the tracking error
for the 3 parameter filter. The 3 parameter filter does a good job of tracking the antenna
position, with position errors of less than 4 arc seconds, after a settling period in the
beginning. This substantially beats the encoder resolution limit despite the accelerations
and noise. Notice that the error drops almost to zero when the acceleration is zero.

Kalman Filter Test - 3 Parameter

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 .

Real_pos
Kal_pos

Kalman Filter Test - 3 Parameter

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 /
s

 .

Real_vel
Kal_vel

Kalman Filter Test - 3 Parameter

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 /
s

 .

Real_acc
Kal_acc

The position, velocity and acceleration estimates generated by the 3-parameter filter.

Kalman Filter Test - 3 Parameter

-0.001
-0.0008
-0.0006
-0.0004
-0.0002

0
0.0002
0.0004
0.0006
0.0008
0.001

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 .

Real_err
Kal_err

The difference between the filter estimate of position and the “real” position in our simulation

(circles). The diamonds show the Kalman filter estimate of the position error, which is similar to
and a little larger than the true error in all cases.

The next 3 graphs show the position and velocity tracking, and the tracking error for the 2
parameter filter with the same inputs.

Kalman Filter Test - 2 Parameter

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 .

Real_pos
Kal_pos

Kalman Filter Test - 2 Parameter

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 /
s

 .

Real_vel
Kal_vel

Position and velocity as estimated by the 2 parameter Kalman filter. This filter does not estimate

the antenna accelerations.

Kalman Filter Test - 2 Parameter

-0.001
-0.0008
-0.0006
-0.0004
-0.0002

0
0.0002
0.0004
0.0006
0.0008
0.001

0 10 20 30 40 50 60 70 80

Time (s)

D
eg

re
es

 .

Real_err
Kal_err

The difference between the filter position and the “real” position (circles) for the 2 parameter

filter. The diamonds show the Kalman filter estimate of the position error.

The performance of the 2 parameter is filter is similar but somewhat better than the 3
parameter filter, as seen by comparing the error plots. The 2 parameter filter settles more
quickly (5 s) than the 3 parameter filter (10 s). After settling down, the 2 parameter filter
shows smaller error excursions than the 3 parameter filter. Notice that in both cases, the
Kalman filter does an adequate job of estimating the bounds of the position error (red
diamonds).

Why should the 2 parameter filter perform better? It has a shorter handle on the
measurements than the 3 parameter filter. Put another way, the position errors resulting
from the encoder resolution and time resolution are more accurately modeled as
momentum impulses than as force impulses. If we were optimizing for tracking in wind,
we might find the 3 parameter filter has a more appropriate model.

Based on these simulations, we choose the 2 parameter model presently. One might
supplement these results with measurements on the real antenna, in the future.

Servo Loop
In software we use a PDFF (position, velocity, velocity feed forward, acceleration feed
forward) servo algorithm. The inputs are the desired antenna trajectory (position, velocity,
and acceleration), and the current Kalman estimate (position, velocity) of where we are
now. We have a discrete time implementation, where time is represented as n for the nth
time interval.

The servo velocity setting at the nth interval sv is dependent upon the estimated position

np̂ and velocity nv̂ at the nth interval as

nnnDnnps aKvKvKppKv affvff)(++−−=)) [1]

where np , nv , and na are the trajectory position, velocity and acceleration, and pK , DK ,

vffK , and affK are respectively the gains for the position, derivative, velocity feed forward,
and acceleration feed forward. It is possible to write this expression more intuitively (at
least for the author) by defining t∆ and vK using

Dp KtK ≡∆

vffKKtK vp ≡+∆

and applying the extra constraint

affKtKv ≡∆ .

Substituting these expressions into Eq. 1 gives

)ˆ()(1111 ++++ −∆+−= nnvnnps vvtKppKv) [2]

where

tvpp nnn ∆+=+
))

1ˆ

and

tavv nnn ∆+=+1 .

Equation 2 takes the perspective of minimizing the future errors rather than the present
error, which after all is already history. We choose a velocity based on our prediction of
the future position error with gain pK , and our prediction of future velocity error with
gain vK . In our implementation, the velocity feed forward and acceleration feed forward
terms are no longer unrelated and ad hoc, but are replaced with a single term associated
with the velocity we wish to achieve in the future. The “future” in this case is a time t∆
from the present time.

Notice that t∆ is not necessarily the same as the time spacing between servo updates st∆ .
It may not be smaller than st∆ or the system will become unstable. We find that setting

t∆ = 4/3 st∆ gives good response time. The ratio vp KK / controls the tradeoff between
position error and velocity error. Minimizing position error (vp KK >>) tries to match
the encoder positions with the desired trajectory, but the motion can be jerky. Minimizing
velocity error emphasizes smooth tracking but increases settling time. We choose

pv KK = based on empirical tests to give a happy medium for these qualities. The only
remaining factor, tuned at run time, is pK .

The time between servo updates is st∆ = 0.3 seconds chosen to be 3 times larger than the
time between encoder readings. Thus the time constant of the servo loop is set to 0.4 sec.

Prefiltering the Input Trajectory
Before the antenna trajectory is sent to the servo loop, we apply a low pass prefilter to
remove frequency components at 3 Hz and above. This is done to minimize excitation of
resonances in the antenna. We also need to limit the velocity of the trajectory we ask the
antenna to follow, so that it is within the antenna capabilities. This situation arises when
we change pointings, at which time the theoretical trajectory changes discontinuously.
We must not allow these discontinuous changes to pass through to the servo input since
they can result in instability of the servo loop.

To implement this prefilter, we first calculate the desired, future positions of the antenna
on a grid of equispaced points sampled at roughly 10 times the stop frequency (here stop
frequency is 3 Hz and sampling is 27 Hz). These calculations take account of the
astronomer’s desires but, especially in the case of a pointing change, limit the velocity to
achievable values (in the example below, to 4°/s). The low pass filter is implemented
with an iterated boxcar filter applied to these samples (i.e. a finite impulse response filter
applied in the time domain). The envelope of boxcar filter has a slow 1/f frequency roll
off, but by iterating the filter we can improve high frequency suppression dramatically as
in the graph below. For example, a 3 iteration filter suppresses all frequencies above 3 Hz
by more than 35 dB.

Freq Response

-100

-80

-60

-40

-20

0

-6 -3 0 3 6
Frequency (Hz)

P
ow

er
 (d

B
)

1 Iter
2 Iters
3 Iters
4 Iters

Frequency response of an iterated boxcar filter as a function of the number of iterations. The

boxcar length is chosen to have its first null at 3 Hz.

One may ask why we choose anything related to a boxcar filter. Certainly other
numerical filters exist that have better frequency response. The reason is that an iterated
boxcar is predictably localized in the time-domain. Consider the step function response in
the graph below. With a 3-iteration filter, the step response error goes to exactly zero
after 0.8 seconds. Therefore, it should be possible to make 1 degree position change in ~1
second, without exciting the 3 Hz resonance at all (< -60 dB).

Step Response

0

0.2

0.4

0.6

0.8

1

-0.5 -0.25 0 0.25 0.5
Time (s)

Fi
lte

r O
ut

pu
t

1 Iter
2 Iters
3 Iters
4 Iters

Response of an iterated boxcar filter to a step function at t = 0.

Below we show a couple of results demonstrating our implementation. In the first case,
we consider a 0.1° impulse. This is not an ordinary trajectory input for the antenna – it is
as if we change pointing for a fraction of a second and then change our mind and go back
to the original pointing – but it demonstrates the behavior one can expect. Firstly, the
output response is time-shifted from the input. This happens because we don’t know in
advance that we’re going to change our mind. After we get started moving to the new
track, we’re committed to go at least partway there. This sense of being “committed”
comes from the filter which does not allow high frequency components to pass through.

Impulse Response

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5
Time (sec)

Po
si

tio
n

(d
eg

) .
Input
Output

The response of prefilter to a position impulse.

Next we consider the response 10° step change in pointing. This step is large enough that
the velocity limiter part of the filter has to kick in. The antenna achieves its maximum
velocity of 4°/sec in less than one second, and the “error” goes exactly to zero in less than
4.5 seconds.

The response of prefilter to a 10° step function.

This example is an idealization to the response of the real antenna to a 10° pointing
change. There is an extra latency introduced by the PDFF servo loop, another latency
from the Kalman filter and yet another small latency from the encoder read back.

Real Antenna Response
To optimize the pointing on each real antenna, we execute a regime of multiple pointings
surrounding bright sources. The description of the pointing model and 10-point regime is
a topic for another memo. Here we display some results from repeatedly cycling through
a 10-point regime surrounding a GPS satellite.

Az and El Position Vs Time

-30

-20

-10

0

10

20

30

0 50 100 150
Time (s)

D
is

ta
nc

e
fro

m
 s

ta
rt

(d
eg

)

4° / sec

1° / sec

Az
El

Careful study of the graph above shows that there are 10 distinct pointing directions
between 0-160 seconds of time, and then the cycle repeats. This graph demonstrates the
rapidity with which our antenna goes from nearly zero velocity (tracking GPS) to
maximum velocity (slew rate = 4°/sec on azimuth and 1°/sec on elevation).

To give an idea of the settling time, we blow up two regions of the above graph, when the
azimuth or elevation are returning to the GPS satellite position after a large excursion.
This is shown in the graphs below.

Az Position Vs Time

-1

-0.5

0

0.5

1

30 35 40 45
Time (s)

D
is

ta
nc

e
fro

m
 tr

aj
ec

to
ry

 (d
eg

) Az

El Position Vs Time

-1
-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

140 142 144 146 148 150
Time (s)

D
is

ta
nc

e
fro

m
 tr

aj
ec

to
ry

 (d
eg

) El

 We observe that the azimuth and elevation positions both overshoot the correct position.
The amount of overshoot is related to the maximum speed of the motor. The settling time
is in the range of a few seconds, consistent with our predictions above.

Discussion and Conclusion
The informed reader might ask, “Where is the I?” The most common servo algorithm is
PID – position, integral, differential. If you don’t feed back the integrated error, the servo
may never converge on the true pointing direction. In our system the “I” term is hidden in
the Copley servo amplifiers. Although we treat the amplifiers as if they were velocity
drives, they are servo loops in their own right. When we issue a velocity command,
fundamentally we are commanding the Copley servo with a filtered position. The Copley
drive makes sure that we achieve the indicated position exactly, to within a fraction of an
arc second. While we don’t specify the integral term directly, it is in there.

This raises another issue: There is another parameter space out there associated with the
Copley amplifiers. When we issue a velocity command, the amplifiers respond with
alacrity that subverts our attempt to limit 3 Hz oscillations of the antenna. Tuning the
Copley amplifiers is unfinished business, and we believe further improvements in the
antenna response will result when this tuning is undertaken.

Putting the Copley aside, the goal of this memo is to document the current
implementation of the servo loop in the antenna control software. Further analysis and
tuning is in order to optimize this servo loop to give the best response to pointing changes
on the real antennas. For example, we anticipate that the settling time might be reduced
even further. The tools to do this (i.e. to measure the pointing) are now in place, both by
reading back the encoders and with an optical pointing system (described elsewhere by
Rick Forster).

