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Abstract 
Here we document some of the details of the antenna tracking software (servo loop). The 

servo loop consists of two parts – estimation of the current antenna position and 
evaluation of the antenna velocity setting to optimize response. The antenna position 

estimation is done with a Kalman filter applied to encoder readings. The control 
parameter (velocity setting) is evaluated with a PDFF (position, velocity, velocity feed 

forward, acceleration feed forward) algorithm fed from a low pass prefilter. 
 

Introduction 
To achieve optimal ATA performance we require a good pointing model so that we can 
tell the antennas where to point with high accuracy. But that isn’t enough; we also need a 
high quality feedback mechanism to keep the antenna stably pointed in the correct 
direction. In cases where we wish to image a large field of view (FOV), we also require 
the antenna to move nimbly from one pointing to the next, so we can cover a large area 
while minimizing settling time. This document focuses on the feedback loop presently 
used in the ATA antenna (note date above).  We begin with a discussion of some 
parameters that constrain the servo loop, such as the encoders and antenna mechanics. 
We then describe the algorithms for position estimation and calculation of feedback 
parameters used to drive the antennas in real time. 

Constraints 
Lowest Antenna Resonant Frequency 
It is fairly easy to make a good estimate of the lowest resonant frequency of the antenna 
mechanics. Mike Davis and Rick Forster drove antennas by hand, feeding back the 
strongest resonance with vigorous shaking. By counting the number of oscillations over 
some seconds and dividing by the time, they found the antennas resonate at about 3 Hz in 
both azimuth and elevation. This is the lowest frequency resonance, and although higher 
resonances exist we can avoid exciting any resonance by filtering the servo drive 
commands to avoid all frequencies near 3 Hz or above. This is a low-pass filter. 

Incremental Encoders 
The ATA antennas employ directly-coupled, incremental encoders with an encoder step 
size of 9 arc seconds. These encoders are read by dedicated hardware on the control 
board (designed by Rob Ackermann), and encoder readings are issued from this board at 
a rate of 10 Hz to the control software. 



Antenna Velocity Drives 
The antenna is moved with DC motors driven by Copley servo amplifiers. Although the 
Copley drives contain their own slew of servo controls and software, we don’t use this 
functionality because the servo loops are too “tight” to be useful. We want telescope 
feedback on the scale of seconds, and indeed wish to avoid driving the 3 Hz resonant 
mode of the antennas. 
 
The maximum slew speed of the Azimuth drives is nominally 4°/s. Some antennas are 
observed to stall at this speed, so the software limits the Azimuth velocity to 3°/s. We 
expect that this mechanical problem will be fixed eventually, and the software limit will 
be raised at that time. The elevation velocity is presently limited to 1°/s. 
 
The servo drives are controlled by sending step pulses to the Copley amplifier. This is the 
same interface used by the old, stepper motor drives. We decided to stick with this 
interface because it provides versatility for the future. The control steps are very small, so 
there is no limitation introduced by the stepper interface (see table). 
 
Useful constants  
Az Degrees per Servo pulse 1.8803 E-04 
El Degrees per Servo pulse (12.925e-4 * el_degrees + 0.411459) / 5000 
Encoder Degrees per encoder step 0.00625 
  
 

Position Estimation: The Kalman Filter 
The control board generates values for the antenna position in azimuth and elevation at a 
rate of 10 Hz. The 9 arc second encoder resolution provides one limitation on our 
position estimate. Theoretically, one can beat this resolution limit by interpolating 
between encoder “ticks” based on recent estimates of the antenna velocity. Velocity 
measurements are limited not only by the encoder resolution but also by our estimate of 
when the encoder ticks occur. In practice this is limited to about 0.1 second by the 
reading rate mentioned above. 
 
To estimate the position, we need a theoretical model of the antenna motion, even if it is 
very simple. For example, we could model the position as a random walk, where the size 
and direction of the next step is completely uncorrelated with the size and direction of the 
last step. The reason our model incorporates randomness or noise, is that A) the antenna 
is subject to external forces like wind, and B) the antenna is subject to the whims of the 
astronomer, who may decide to point in a completely different direction at any time. Thus 
a random walk is the simplest possible nonstationary motion model. However, we expect 
the antenna has inertia, so we look for a model that incorporates this fact. 
 
One way to introduce inertia is to integrate a random walk. More specifically, we suppose 
the antenna has a certain mass and suffers random, Gaussian-distributed momentum 



impulses. Or following the physics of random winds, we might suppose the antenna 
suffers Gaussian-distributed forces (acceleration impulses). Other models are possible.  
 
Once we have chosen our model, we may implement the model in a Kalman filter. The 
brilliance of Kalman’s result is that, given a set of time-ordered measurements and a 
parameterized (linear) model, the Kalman filter gives a least squares best estimate of the 
model parameters. Many least-squares techniques exist, but Kalman’s prescription allows 
us to apply measurements incrementally as they come in, always maintaining the present 
best estimate. We won’t discuss how it works here, but we have found to be very useful 
the book, “Kalman Filtering: Theory and Practice”, by M. S. Grewal and A. P. Andrews. 
 
We compare two Kalman filter implementations corresponding to the random momentum 
impulse (2 parameter filter) or random acceleration impulse models (3 parameter filter). 
These two implentations are driven with numerically-generated sinusoidal position values 
(that simulate the kind of trajectory accelerations we intend to track) with realistically 
simulated encoder noise. Here we’re optimizing for the “no wind” case. 
 
The first graphs show tracking of position, velocity, acceleration, and the tracking error 
for the 3 parameter filter. The 3 parameter filter does a good job of tracking the antenna 
position, with position errors of less than 4 arc seconds, after a settling period in the 
beginning. This substantially beats the encoder resolution limit despite the accelerations 
and noise. Notice that the error drops almost to zero when the acceleration is zero.



Kalman Filter Test - 3 Parameter
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Kalman Filter Test - 3 Parameter
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Kalman Filter Test - 3 Parameter
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The position, velocity and acceleration estimates generated by the 3-parameter filter. 



 

Kalman Filter Test - 3 Parameter
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The difference between the filter estimate of position and the “real” position in our simulation 

(circles). The diamonds show the Kalman filter estimate of the position error, which is similar to 
and a little larger than the true error in all cases. 

 
The next 3 graphs show the position and velocity tracking, and the tracking error for the 2 
parameter filter with the same inputs. 



Kalman Filter Test - 2 Parameter
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Kalman Filter Test - 2 Parameter
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Position and velocity as estimated by the 2 parameter Kalman filter. This filter does not estimate 

the antenna accelerations. 



Kalman Filter Test - 2 Parameter
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The difference between the filter position and the “real” position (circles) for the 2 parameter 

filter. The diamonds show the Kalman filter estimate of the position error. 
 
The performance of the 2 parameter is filter is similar but somewhat better than the 3 
parameter filter, as seen by comparing the error plots. The 2 parameter filter settles more 
quickly (5 s) than the 3 parameter filter (10 s). After settling down, the 2 parameter filter 
shows smaller error excursions than the 3 parameter filter. Notice that in both cases, the 
Kalman filter does an adequate job of estimating the bounds of the position error (red 
diamonds).  
 
Why should the 2 parameter filter perform better? It has a shorter handle on the 
measurements than the 3 parameter filter. Put another way, the position errors resulting 
from the encoder resolution and time resolution are more accurately modeled as 
momentum impulses than as force impulses. If we were optimizing for tracking in wind, 
we might find the 3 parameter filter has a more appropriate model.  
 
Based on these simulations, we choose the 2 parameter model presently. One might 
supplement these results with measurements on the real antenna, in the future. 

Servo Loop 
In software we use a PDFF (position, velocity, velocity feed forward, acceleration feed 
forward) servo algorithm. The inputs are the desired antenna trajectory (position, velocity, 
and acceleration), and the current Kalman estimate (position, velocity) of where we are 
now. We have a discrete time implementation, where time is represented as n for the nth 
time interval.  
 
The servo velocity setting at the nth interval sv  is dependent upon the estimated position 

np̂  and velocity nv̂  at the nth interval as 
 

nnnDnnps aKvKvKppKv affvff)( ++−−= ))       [1] 



 
where np , nv , and na  are the trajectory position, velocity and acceleration, and pK , DK , 

vffK , and affK are respectively the gains for the position, derivative, velocity feed forward, 
and acceleration feed forward.  It is possible to write this expression more intuitively (at 
least for the author) by defining t∆  and vK  using 
 

Dp KtK ≡∆  
 

vffKKtK vp ≡+∆  
 
and applying the extra constraint 
 

affKtKv ≡∆ . 
 
Substituting these expressions into Eq. 1 gives 
 

)ˆ()( 1111 ++++ −∆+−= nnvnnps vvtKppKv )       [2] 
 
where 
 

tvpp nnn ∆+=+
))

1ˆ  
 
and 
 

tavv nnn ∆+=+1 . 
 
Equation 2 takes the perspective of minimizing the future errors rather than the present 
error, which after all is already history. We choose a velocity based on our prediction of 
the future position error with gain pK , and our prediction of future velocity error with 
gain vK . In our implementation, the velocity feed forward and acceleration feed forward 
terms are no longer unrelated and ad hoc, but are replaced with a single term associated 
with the velocity we wish to achieve in the future. The “future” in this case is a time t∆  
from the present time. 
 
Notice that t∆  is not necessarily the same as the time spacing between servo updates st∆ . 
It may not be smaller than st∆  or the system will become unstable. We find that setting 

t∆  = 4/3 st∆  gives good response time. The ratio vp KK /  controls the tradeoff between 
position error and velocity error. Minimizing position error ( vp KK >> )  tries to match 
the encoder positions with the desired trajectory, but the motion can be jerky. Minimizing 
velocity error emphasizes smooth tracking but increases settling time. We choose 



pv KK =  based on empirical tests to give a happy medium for these qualities. The only 
remaining factor, tuned at run time, is pK . 
 
The time between servo updates is st∆ = 0.3 seconds chosen to be 3 times larger than the 
time between encoder readings. Thus the time constant of the servo loop is set to 0.4 sec. 

Prefiltering  the Input Trajectory 
Before the antenna trajectory is sent to the servo loop, we apply a low pass prefilter to 
remove frequency components at 3 Hz and above. This is done to minimize excitation of 
resonances in the antenna. We also need to limit the velocity of the trajectory we ask the 
antenna to follow, so that it is within the antenna capabilities. This situation arises when 
we change pointings, at which time the theoretical trajectory changes discontinuously. 
We must not allow these discontinuous changes to pass through to the servo input since 
they can result in instability of the servo loop. 
 
To implement this prefilter, we first calculate the desired, future positions of the antenna 
on a grid of equispaced points sampled at roughly 10 times the stop frequency (here stop 
frequency is 3 Hz and sampling is 27 Hz). These calculations take account of the 
astronomer’s desires but, especially in the case of a pointing change, limit the velocity to 
achievable values (in the example below, to 4°/s).  The low pass filter is implemented 
with an iterated boxcar filter applied to these samples (i.e. a finite impulse response filter 
applied in the time domain). The envelope of boxcar filter has a slow 1/f frequency roll 
off, but by iterating the filter we can improve high frequency suppression dramatically as 
in the graph below. For example, a 3 iteration filter suppresses all frequencies above 3 Hz 
by more than 35 dB. 
 

Freq Response

-100

-80

-60

-40

-20

0

-6 -3 0 3 6
Frequency (Hz)

P
ow

er
 (d

B
)  

1 Iter
2 Iters
3 Iters
4 Iters

 
Frequency response of an iterated boxcar filter as a function of the number of iterations. The 

boxcar length is chosen to have its first null at 3 Hz. 
 



One may ask why we choose anything related to a boxcar filter. Certainly other 
numerical filters exist that have better frequency response. The reason is that an iterated 
boxcar is predictably localized in the time-domain. Consider the step function response in 
the graph below. With a 3-iteration filter, the step response error goes to exactly zero 
after 0.8 seconds. Therefore, it should be possible to make 1 degree position change in ~1 
second, without exciting the 3 Hz resonance at all  (< -60 dB).  
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Response of an iterated boxcar filter to a step function at t = 0. 

  
Below we show a couple of results demonstrating our implementation. In the first case, 
we consider a 0.1° impulse. This is not an ordinary trajectory input for the antenna – it is 
as if we change pointing for a fraction of a second and then change our mind and go back 
to the original pointing – but it demonstrates the behavior one can expect. Firstly, the 
output response is time-shifted from the input. This happens because we don’t know in 
advance that we’re going to change our mind. After we get started moving to the new 
track, we’re committed to go at least partway there. This sense of being “committed” 
comes from the filter which does not allow high frequency components to pass through. 
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The response of prefilter to a position impulse. 

 
Next we consider the response 10° step change in pointing. This step is large enough that 
the velocity limiter part of the filter has to kick in. The antenna achieves its maximum 
velocity of 4°/sec in less than one second, and the “error” goes exactly to zero in less than 
4.5 seconds. 
 

 
The response of prefilter to a 10° step function. 

 
This example is an idealization to the response of the real antenna to a 10° pointing 
change. There is an extra latency introduced by the PDFF servo loop, another latency 
from the Kalman filter and yet another small latency from the encoder read back. 



Real Antenna Response 
To optimize the pointing on each real antenna, we execute a regime of multiple pointings 
surrounding bright sources. The description of the pointing model and 10-point regime is 
a topic for another memo. Here we display some results from repeatedly cycling through 
a 10-point regime surrounding a GPS satellite. 
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Careful study of the graph above shows that there are 10 distinct pointing directions 
between 0-160 seconds of time, and then the cycle repeats. This graph demonstrates the 
rapidity with which our antenna goes from nearly zero velocity (tracking GPS) to 
maximum velocity (slew rate = 4°/sec on azimuth and 1°/sec on elevation).  
 
To give an idea of the settling time, we blow up two regions of the above graph, when the 
azimuth or elevation are returning to the GPS satellite position after a large excursion. 
This is shown in the graphs below. 
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 We observe that the azimuth and elevation positions both overshoot the correct position. 
The amount of overshoot is related to the maximum speed of the motor. The settling time 
is in the range of a few seconds, consistent with our predictions above. 



Discussion and Conclusion 
The informed reader might ask, “Where is the I?” The most common servo algorithm is 
PID – position, integral, differential. If you don’t feed back the integrated error, the servo 
may never converge on the true pointing direction. In our system the “I” term is hidden in 
the Copley servo amplifiers. Although we treat the amplifiers as if they were velocity 
drives, they are servo loops in their own right. When we issue a velocity command, 
fundamentally we are commanding the Copley servo with a filtered position. The Copley 
drive makes sure that we achieve the indicated position exactly, to within a fraction of an 
arc second. While we don’t specify the integral term directly, it is in there. 
 
This raises another issue: There is another parameter space out there associated with the 
Copley amplifiers. When we issue a velocity command, the amplifiers respond with 
alacrity that subverts our attempt to limit 3 Hz oscillations of the antenna. Tuning the 
Copley amplifiers is unfinished business, and we believe further improvements in the 
antenna response will result when this tuning is undertaken. 
 
Putting the Copley aside, the goal of this memo is to document the current 
implementation of the servo loop in the antenna control software. Further analysis and 
tuning is in order to optimize this servo loop to give the best response to pointing changes 
on the real antennas. For example, we anticipate that the settling time might be reduced 
even further. The tools to do this (i.e. to measure the pointing) are now in place, both by 
reading back the encoders and with an optical pointing system (described elsewhere by 
Rick Forster). 


