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1. Introduction 

This report is prepared by Astro Signal Pty Ltd for the SETI Institute under Consulting Agreement 

Number 08-SC-1042.  It documents the signal processing investigations carried out by Dr Ian S. 

Morrison for the setiQuest project during the period October 2010 to March 2011. 

The setiQuest project is a citizen science initiative of the SETI Institute that aims to engage the public 

in the analysis and interpretation of radio telescope data obtained from the Allen Telescope Array 

(ATA).  The SETI Institute already has powerful and efficient algorithms to search for and validate 

narrowband signals of possible extraterrestrial (ET) origin.  Such signals appear distinctively on 

frequency versus time „waterfall plots‟ as lines with a characteristic slope due to the Doppler effect of 

the Earth‟s motion.  However, signals of this type can generally be detected reliably in software 

without „manual‟ human intervention.  The greater potential benefit of setiQuest was perceived to be 

able to come from considering more complex wideband signals that could not currently be detected 

automatically in software.  There are also many frequency sub-bands within the ATA data that are 

congested with terrestrial interference, making the task of discovering potential ET signals 

(narrowband or wideband) much more difficult.  An important objective for setiQuest was therefore to 

investigate new methods for signal processing and visualisation that would facilitate a human 

contribution to the detection of ET signals under the more complex scenarios described above. 

Research on methods for analysing wideband signals was already underway within the SETI Institute 

during 2010 with the work of Gerry Harp and Rob Ackermann on autocorrelation detection.  

Prototype software had been implemented that could demonstrate the ability of autocorrelation to 

reveal characteristic features of modulated wideband signals, including a range of terrestrial 

interferers and downlink signals from satellites such as the GPS satellite constellation.  Although 

clearly able to detect the presence of strong signals (even multiple overlaid signals), questions 

remained about the sensitivity of the autocorrelation method in relation to the very weak signals 

anticipated for any ET sources that might exist. 

In 2010 Jill Tarter became aware of the author‟s research on wideband SETI and alternative signal 

detection algorithms.  The potential to incorporate some of the author‟s ideas in the setiQuest project 

and also explore new detection methods more generally was the motivation for engaging the author on 

a short-term consulting contract. 

Working with Jill, Gerry and Rob, the author considered various alternative signal processing 

techniques that might be considered for detection of arbitrary wideband signals and interference 

sources.  The techniques were examined in conjunction with novel ideas for data visualisation, with a 

view to developing methods that could form the basis for an advanced setiQuest client visualisation 

tool. 

A short way into the contract it was concluded that, after frequency/time waterfall plots, the next 

natural type of visualisation that should be provided for setiQuest was some form of autocorrelation 

(AC) waterfall plot, i.e. a two-dimensional plot of the autocorrelation spectrum versus time.  In this 

type of plot each horizontal line represents the autocorrelation spectrum for a given segment of data 

(shown by intensity) as a function of autocorrelation time delay.  The vertical axis reveals changes in 

the autocorrelation spectrum over time, allowing both static and transient features to be identified.  

Prototyping of an autocorrelation waterfall client is being pursued by Rob Ackermann and others and 

is not described in this report. 

This report focuses on the underlying signal processing algorithms that generate autocorrelation 

spectra suitable for display using the AC waterfall tool.  In particular it presents and analyses a 

variation of the autocorrelation method that is more sensitive than conventional autocorrelation for 

many classes of signal of interest to SETI, and therefore considered to be a valuable complement to 

conventional autocorrelation for setiQuest.  This new method, known as “symbol-wise 

autocorrelation” (SWAC) was first proposed by the author as part of his PhD research, and its 
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development and refinement is an area of ongoing research by the author.  Some of the content of this 

report has been taken from a paper by the author that first introduced the SWAC concept [1]. 

For this specific setiQuest contract the focus was on two activities: 

1. Analysing the detection sensitivity of SWAC and comparing against conventional 

autocorrelation to justify a further investment in its implementation; 

2. Developing a prototype high-level language implementation of SWAC for evaluation 

purposes and to serve as the basis for code to be run in conjunction with the setiQuest AC 

waterfall visualisation tool. 

The SWAC software provided under this contract implements what the author refers to as the “basic 

SWAC algorithm”.  During 2011/12 the author expects to develop several refinements to the 

algorithm that will increase the detection sensitivity and further extend its advantages over other 

detection approaches.  Once validated, these refinements will be made known to SETI Institute staff 

so that they can implement performance optimisations by way of incremental software updates. 

Beyond conventional autocorrelation and SWAC variations there are numerous other signal 

processing techniques that could in the future be considered for incorporation into the setiQuest 

project.  Every new visualisation has the potential to help reveal signal features not observable with 

the current tools.  The development and incorporation of SWAC into setiQuest serves as one example, 

but the hope is that many other techniques will be added over time to further enhance setiQuest‟s 

potential for success. 
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2. Wideband SETI 

This section provides some background to the work described in subsequent sections. 

2.1 Why Wideband SETI is Considered Important 
There is increasing interest in broadening traditional narrowband SETI to also consider wideband 

signal formats, such as modulated information-bearing carriers.  The possibility of detecting such 

signals arises in two scenarios: 

1. Detection by „eavesdropping‟ of an ET civilization‟s „internal‟ communications or radar 

signals; 

2. Detection of a deliberately transmitted information-bearing interstellar beacon. 

The relative likelihood of success for each of these scenarios will not be discussed here, other than to 

note that eavesdropping is unlikely to be fruitful beyond distances of a few hundred light-years at best 

[2].  The much larger number of potentially habitable planets at distances beyond this (such as in the 

vicinity of the galactic centre) would suggest that a search for beacons emanating from near the 

galactic centre should have a higher probability of success. 

Beacon searches to date have focussed on monochromatic signals.  These are assumed easier to 

generate at high powers, are less affected by dispersion from the interstellar medium (ISM), and 

highly sensitive receivers on Earth are easier to construct.  However, amongst other concerns, a 

monochromatic beacon has low information content.  It conveys just one bit: “you are not alone”.  If 

we assume there may be many ETIs and beacons, any given beacon will typically not be the first 

detected by any given recipient – in which case there is no incremental value in being told “you are 

not alone”.  Given the high cost to build and operate a galactic-scale beacon, the question must be 

asked…why would ET invest in a beacon and not send information? 

Once we accept there is merit in searching for galactic scale information-bearing beacons, we then 

need to address the questions: what might such beacons signals look like, and what is the best way to 

search for them? 

2.2 Challenges of Wideband SETI 
Searching for wideband signals is perceived to be inherently more difficult than narrowband signals 

due to the increased dimensionality of the problem.  Along with unknown carrier frequency there are 

additional unknowns of modulation type, rate and alphabet (the waveforms that represent the different 

symbols in a transmitted sequence).  That is, there are more degrees of freedom in signal structure, 

and it is inherently more difficult to build an optimum receiver when you don‟t know the structure of 

the signal you are looking for. 

In his work on applying communications engineering principles to interstellar signalling [3], 

Messerschmitt has shown that a form of spread-spectrum signalling in which the signal appears like 

white noise represents a compelling choice of waveform type, since it can be shown that this will 

maximise immunity to unknown sources of noise and interference at the receiver.  This form of 

signalling can potentially make it extremely challenging to detect the signal without having a 

knowledge of the spreading sequences involved (which define the modulation alphabet).  This is 

because, without knowing the alphabet, there is no way to benefit from the processing gain associated 

with de-spreading – and prior to de-spreading the signal could well be below the noise floor of the 

receiver, or potentially even below the sky noise floor due to the Cosmic Microwave Background. 

The temporal dimension represents another degree of freedom.  Benford et al [4] have proposed that 

beacon signals operating on a galactic scale will be observed by receivers as transient sources.  This 

follows from a consideration of galactic beacons as cost-constrained resource-limited systems, which 
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suggests they would utilise a narrow transmission beam that is spatially swept and would illuminate 

any given target star system for a limited time (the „dwell time‟). 

Another feature of wideband signals is that they are affected in a more complex way by Doppler and 

ISM degradations (dispersion, scattering), which further complicates the discovery process. 

For all of these reasons there has long been a common perception that wideband SETI has too many 

degrees of freedom for practical searches.  Some have postulated that an information-bearing 

wideband beacon signal would need to be accompanied by a more easily detectable “attractor beacon” 

signal (e.g. narrowband or pulsed) to draw attention to the information-bearing signal. 

However, the concerns raised about the detectability of wideband signals have often overlooked the 

fact that wideband signals can be deliberately selected (or constructed) so as to aid detection.  

Specifically, signals that possess the property of cyclostationarity are amenable to signal analysis 

techniques that can make detectable features more visible.  Cyclostationarity is discussed further in 

Section 2.4. 

Another misconception concerning wideband signal detection is that there must be redundancy 

present in the signal, i.e. that there needs to be repetition of signal waveforms and/or information 

content.  As will be shown in subsequent sections, this is not the case.  We show that for 

cyclostationary signals it is enough for the signal to possess repetition in structure and not content.  

The SWAC algorithm that we describe in Section 3 exploits the „autocorrelation signature‟ inherent to 

cyclostationary signals to simplify the detection problem.  It obviates the need for knowledge of the 

specific modulation method and can be used to detect a wide range of modulation alphabets, including 

high-dimensionality spread-spectrum alphabets.  SWAC reduces the search problem to essentially a 

single search dimension – the same dimensionality as searching for a narrowband signal of unknown 

frequency.  Reliable detection can be achieved even at low signal-to-noise ratio (SNR), meaning there 

may be no need for a separate attractor beacon; the information-bearing signal itself serves as the 

beacon. 

2.3 Detection of Wideband Signals 

2.3.1 Power Spectral Density 

Perhaps the most obvious method to detect wideband signals is to examine the power spectral density 

(PSD) of the band of interest, in the same way that is employed for the detection of narrowband 

signals.  The PSD shows the distribution in the frequency domain of the measured power of 

[signal+noise].  If the target signal is significantly more powerful than the surrounding noise, the 

spectrum of the modulated carrier will be clearly visible above the noise level in the PSD.  However, 

a more reasonable assumption for wideband SETI is that the target signal‟s power density is low and 

that its spectrum will not appear clearly above the noise level, as illustrated in Figure 1. 

2.3.2 Energy Detection 

Similar to the PSD approach, energy detection involves integrating the [signal+noise] power over a 

given timespan to obtain a low-variance measure of the total energy.  If the target signal is transient in 

nature, the measured energy will vary between [noise-only] (when the signal is not present) and 

[signal+noise] (when the signal is present).  If the measurement variance is low enough, even very 

low signal energies may induce a sufficiently large measurement variation to determine if a signal is 

present, with an acceptable probability of false alarm.  However, at least for key wideband signal 

classes of interest for beacons, we will see in a later section that the detection sensitivity of an energy 

detector is fundamentally lower than that of an appropriately designed autocorrelation detector. 
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Figure 1: Illustrative power spectral densities for signals embedded in noise.  For the 
wideband case the signal level is below the noise and will not be directly visible. 

It is worth noting here that energy detection is an efficient way to detect narrowband signals because 

the energy is concentrated in a narrow bandwidth, allowing the noise entering the detector to be 

minimised.  It is not efficient for spread-spectrum signals because of the much higher detector noise 

bandwidth.  The optimum detector for any signal (narrowband or wideband) is a „matched filter‟, 

which by definition requires knowledge of the transmitted waveform.  In the case of a spread-

spectrum receiver, the processing gain from de-spreading overcomes the high noise bandwidth of the 

receiver – but you need to know the spreading codes to perform de-spreading.  If you know the 

spreading codes, the detector SNR is given by SNRMF = Es/N0 where Es is the average energy per 

modulation symbol and N0 is the noise power density.  If you don‟t know the spreading codes and rely 

on energy detection, the detector SNR is given by SNRED = (1/ 2WTs)(Es/N0)
2
 where Ts is the symbol 

period and W is the measurement bandwidth.  Detector performance will be poor for low Es/N0 (due 

to the squaring operation) and large W.  However, it is possible to improve SNRED by averaging over 

a longer measurement time T, giving an improvement proportional to T. 

2.3.3 Cyclic Spectral Analysis 

The detection of a wideband signal is made more difficult if its PSD is relatively flat across the signal 

bandwidth and contains no discrete spectral lines.  This is generally the case when carriers are 

modulated using power-efficient modulation schemes, to avoid wasting energy on signal components 

that do not carry information.  In his work on cyclostationarity, Gardner [5] points out that signals not 

having discrete spectral lines in their PSD may, however, possess a second-order periodicity, which 

means that if a nonlinear process is applied to the signal, discrete spectral lines will be regenerated.  In 

a generalisation of Fourier spectral analysis for periodic signals, Gardner has developed the concept of 

the “Cyclic Spectrum” of a cyclostationary signal [6].  This method produces a 2-dimensional 

spectrum (in the axes of frequency and delay) that preserves the phase information of a signal.  It can 

be used to obtain discrete spectral features that are not evident in a Fourier-generated spectrum.  

These features may, under some circumstances, be more easily distinguished from the noise than with 

a traditional PSD. 

2.3.4 Autocorrelation 

Autocorrelation can simply be defined as the correlation of a waveform with a delayed version of 

itself.  The potential to apply autocorrelation methods in SETI was recognised as early as 1965 by 

Drake [7].  More recently Harp et al [8] have discussed a signalling method that can be effectively 

detected by means of autocorrelation.  Both these examples consider a scenario where more than one 
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signal is superimposed in either time or frequency, with autocorrelation used to detect the presence of 

repetition. 

The SWAC algorithm is also autocorrelation-based but it differs from conventional autocorrelation by 

taking account of assumed symbol boundaries in a modulated signal – hence the name symbol-wise 

autocorrelation.  With SWAC, successful detection is not conditional on explicit repetition of (or 

within) target signals, so it can be used to detect a single signal in isolation.  It exploits structural 

properties of a cyclostationary signal and there is no requirement for any repetition of the information 

content of the signal.  This feature is attractive in a SETI context because it allows the possibility of 

signal discovery from any captured segment of an extraterrestrial signal without there needing to be 

explicit repetition of that segment or the content within it. 

SWAC has a certain similarity to Cyclic Spectral Analysis in the way that time-segments of the signal 

waveform are repeatedly „folded‟ on themselves as part of the process.  However, SWAC generates 

discoverable features in a more direct way than Cyclic Spectral Analysis and, for the types of signals 

of interest to SETI, is expected to provide superior detection sensitivity
1
. 

It is difficult to compare the detection sensitivity of autocorrelation with energy detection because the 

behaviour of an autocorrelation detector is waveform-dependent.  For example, for many randomly 

modulated signals conventional autocorrelation may yield worse sensitivity than energy detection.  

However, as we shall see in Section 3.4, SWAC can be shown to be superior to energy detection by 

some margin for signals of this type.  The performance of SWAC is still sub-optimal compared to 

matched filtering, but unlike matched filtering it is not necessary to know the spreading codes.  So for 

situations where the spreading codes are unavailable or cannot be deduced, SWAC could be the next 

best option.  With enough measurement time, a SWAC detector may be sensitive enough to get the 

job done. 

2.3.5 Karhunen-Loève Transform 

The Karhunen-Loève Transform (KLT) is an algorithm capable of being used to detect the presence 

of signals of arbitrary unknown structure that are embedded within noise.  It performs an orthogonal 

linear transformation of the [signal+noise], using an eigenvalue/eigenfunction computation to 

determine the optimal transformation axes for bringing the signal component „into view‟.  The KLT is 

computationally very complex but has moved from a theoretical curiosity to a potentially practical 

signal processing tool in recent years as real-time computing capabilities have increased.  A good 

description of the KLT and the recent advances in its implementation can be found in Maccone‟s text 

[9]. However, despite these developments there remain concerns about the ability to process radio 

telescope data in real time with the KLT to make an initial detection.  Perhaps more realistic in the 

near-term is that the KLT will prove to be a powerful tool to analyse candidate „events‟ once they 

have initially been discovered by other means. 

The potential of the KLT for discovering wideband ET signals is left to others to explore.  Instead, 

this report focuses on the SWAC autocorrelation-based algorithm, which is conceptually and 

computationally less complex than the KLT.  While SWAC may not be applicable to any arbitrary 

signal, it should be effective for all cyclostationary signals; a class that includes most modulation 

schemes that are considered attractive for interstellar communications. 

2.4 Cyclostationarity, Autocorrelation and Antipodal Signalling 
As noted earlier, autocorrelation involves correlating a waveform with a delayed version of itself.  By 

computing the degree of correlation over a range of delay values, one can generate an „autocorrelation 

spectrum‟ that essentially shows how „self-similar‟ a waveform is over time.  If there exist any 

repeating patterns in the waveform, the autocorrelation spectrum will display peaks at the delays 

corresponding to the time separations between the repeated elements. As an example, if a waveform 
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happened to consist of a contiguous sequence of duplicate waveform segments of length Tw, its 

autocorrelation would display a peak at delay Tw (and integer multiples of Tw). 

While it is easy to see how a repetitive redundant signal can be detected with autocorrelation, it is less 

obvious that a recognisable autocorrelation signature can also be exhibited by signals where there is 

no redundant repetition.  Autocorrelation can also reveal the presence of signals that contain some 

form of periodicity in their structure, with no requirement for repetition of the content of the signal
2
. 

Signals that exhibit structural periodicity (or whose statistical properties vary cyclically with time) are 

referred to as cyclostationary.  This class encompasses virtually all digital modulation methods used 

in terrestrial communications systems.  Any modulation approach that involves sending a sequence of 

symbols with a common symbol period Ts and chosen from a finite symbol set (alphabet) will display 

some degree of cyclostationarity.  Even when specific symbol values in the sequence are selected 

randomly, over a sufficient length of time the finite alphabet ensures cyclostationarity.  Specifically 

there exists periodicity in time Ts and so the autocorrelation of such a signal will display peaks at 

delay Ts and its multiples.  However, the strength of the autocorrelation will depend on the size of the 

symbol alphabet and the distribution of symbol values in the waveform sample being analysed. 

Consider an arbitrary sequence of contiguous symbols, sk(t), as depicted in Figure 2.  We assume the 

sk(t) are chosen from a finite alphabet. 

 

 

Figure 2: A Sequence of contiguous modulation symbols, sk(t) 

At delay Ts the autocorrelation process is effectively measuring the degree of similarity between 

consecutive symbols.  It is easy to see that the larger the symbol alphabet, the lower will be the 

average degree of similarity between consecutive symbols.  Conversely, the average degree of 

similarity will be maximised with the smallest symbol alphabet: a binary alphabet.  Even if the two 

possible symbol values are completely orthogonal (zero cross-correlation), for randomly selected 

symbol values there will be maximum correlation 50% of the time, when the adjacent symbols happen 

to be the same value.  In general the cross-correlation between different members of a symbol set will 

not be zero, so this represents just one particular scenario.  However, it illustrates how autocorrelation 

sensitivity is, in general, maximised with a binary alphabet. 

Antipodal signalling is a subclass of binary cyclostationary signalling in which the two members of 

the symbol alphabet are the inverse of one another.  This alphabet can be represented as [A, -A].  

Binary data can be mapped to this signal set by assigning one symbol type to represent 0 and the other 

to represent 1. 

The simplest example of an antipodal signal set is Binary Phase Shift Keying (BPSK), which can be 

described as signalling with the alphabet [1,-1].  The BPSK signal set is illustrated in Figure 3. 

sk-1(t) ……

Ts

sk(t) sk+1(t) sk+2(t)sk-1(t) ……

Ts

sk(t) sk+1(t) sk+2(t)
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Figure 3: BPSK signal set, with example waveforms at RF and baseband 

However, an antipodal signal set can potentially be much more complex than BPSK, with symbols 

having higher dimensionality (e.g. multiple chips per symbol
3
) and with chips varying in amplitude, 

phase or even width.  The antipodal constraint means that the waveform representing one alphabet 

member is precisely the negative of the other member at every point in the complex waveform 

representation (i.e. a point-wise 180º complex rotation of the first waveform).  An example is shown 

in Figure 4; in this case a form of spread-spectrum BPSK. 

 

Figure 4: An illustrative spread-spectrum BPSK signal set – an example of a high-
dimensionality binary antipodal alphabet 

The key feature of an antipodal signal set is that, regardless of the specific waveform shape for one 

alphabet member, the correlation of any one symbol with any other will always give either 1 (if they 

are the same symbol) or -1 if they are different symbols.  This also means that when successive 

symbols are transmitted on a channel, the correlation between adjacent symbols at the receiver will be 

1 or -1 (following normalisation and ignoring noise and phase rotations for the present).  This 
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immediately suggests an autocorrelation process on the received signal could be used to reveal the 

presence of the modulation. 

If we consider the autocorrelation of a sequence of randomly selected antipodal symbols, then at delay 

Ts we see interesting behaviour.  Over time the autocorrelation score averages to zero.  This is 

because on average 50% of adjacent symbols are fully correlated and the other 50% are fully 

uncorrelated (i.e. produce a negative correlation score).  On the face of it, this suggests autocorrelation 

would not be an effective method for detecting antipodal signals in noise, which would be 

disappointing given the known power efficiency advantages of antipodal modulation.  However, the 

autocorrelation behaviour of antipodal signal sets can be turned to an advantage when one recognises 

that every adjacent symbol pair produces a maximum magnitude correlation score, albeit a mix of 

positive and negative values.  If the absolute value of each symbol pair‟s correlation score is 

accumulated over the symbol sequence then it can be seen that in fact antipodal signalling maximises 

the autocorrelation peak produced by the signal at delay Ts.  This is the motivation behind the SWAC 

algorithm presented in Section 3. 

As mentioned in Section 2.2, there are persuasive arguments in favour of utilising spread-spectrum 

modulation for interstellar signalling.  We have already shown an example of such a signal set, for the 

antipodal case, in Figure 4.  How does this type of signal set behave with autocorrelation?  As 

explained above, any antipodal signal set will result in ±1 correlation scores between adjacent 

symbols, i.e. for an autocorrelation delay of Ts.  What does change for the spread-spectrum case is the 

behaviour at other values of delay.  Assuming the pseudo-noise sequence used for the spreading 

process has been selected appropriately
4
, there will be a large reduction in the correlation score for 

sample delays that result in one or more chip intervals of time offset.  This means that an 

autocorrelation spectrum for a spread-spectrum signal will display a sharper peak at Ts than the non-

spread case.  This helps to make the autocorrelation peak easier to distinguish amidst high levels of 

noise.  In this way the use of spread-spectrum is highly beneficial for signal detection using 

autocorrelation methods. 

The idea of using autocorrelation to detect unknown spread-spectrum signals is not new (e.g. [10]).  

However, previous approaches have not taken account of symbol boundaries and do not gain the 

benefits that arise from a symbol-wise approach to detecting antipodal spread-spectrum signals.  The 

SWAC algorithm provides superior detection sensitivity in comparison with previous approaches, 

with a manageable increase in computational complexity (as will be seen in Section 4). 
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3. Symbol-Wise Autocorrelation 

This section describes the SWAC algorithm and derives its detection sensitivity.  Comparisons are 

made with matched filtering and energy detection. 

3.1 Algorithm Definition 
As explained in Section 2.4, the effectiveness of conventional autocorrelation over multiple symbols 

in a random symbol sequence is limited by the averaging of positive and negative correlation scores.  

However, if the absolute value of the correlation score from each symbol pair is accumulated
5
, the 

signal component of each correlation adds coherently, and the correlation peak at Ts is maximised. 

The challenge in SETI is that, for a received waveform y(t), we do not know the symbol boundaries 

(if indeed a modulated signal is present), nor the symbol period, Ts.  Furthermore, we do not know the 

signal alphabet, [S, -S], nor the centre frequency of the modulated carrier. 

However, if there was a signal component in y(t) that happened to be modulated using an antipodal 

signal set, we can exploit the characteristics of antipodal signalling to reduce the search space 

dramatically.  For a given segment of y(t) we can perform a search over the symbol-period dimension 

(over variable τ) without knowing the carrier frequency or signal alphabet.  We can make progressive 

calculations of the autocorrelation across a range of delays corresponding to the minimum symbol 

period τ1 to maximum symbol period τ2 under consideration in the search.  For each trial τ we 

correlate an assumed sequence of noisy symbols y(t) with a one-symbol-delayed version of y(t) (i.e. 

y(t+τ)), accumulating the absolute value of each symbol-by-symbol correlation score.  If a signal is 

present then at τ close to Ts the autocorrelation score will peak at value Dpeak.  At other τ values the 

misalignment of symbol periods will produce a low average autocorrelation score.  A signal is 

deemed to be present if Dpeak exceeds a specified threshold, which is set relative to the mean 

autocorrelation score.  

We call this algorithm symbol-wise autocorrelation (SWAC), which, in its discrete-time form, is 

expressed mathematically in equations (1), (2) and (3). 

  

 (1) 

 

 

 (2) 

 

 (3) 

 

In Equation (1), yk are the complex samples of waveform y(t), M is the number of symbols processed, 

τ is the trial symbol period, and k0 is the sample index corresponding to the first sample of each 

symbol.  Equation (3) gives us the estimated symbol period of the signal embedded in y(t), which will 

be useful for any subsequent processing to extract the information content of the signal. 
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It is worth emphasising that the search is over τ and k0.  One does not need to know the centre 

frequency, chip rate (bandwidth) or symbol alphabet (spreading codes). 

A variation on Equation (1) that provides a worthwhile gain in detection sensitivity can be obtained 

by taking the absolute value of just the real component of each complex symbol-pair correlation 

score, as shown in Equation (4).  This optimisation is only possible if the arbitrary phase shift between 

symbols in passband is successfully estimated and removed
6
, which should be possible when a 

sufficient number of symbols are available to process (i.e. M > ~20). 

  

 (4) 

 

Note that SWAC can be used to detect any cyclostationary signal, but the algorithm achieves 

maximum sensitivity when the alphabet is of the binary antipodal form.  An expression for the 

detection sensitivity is derived in Section 3.4 for the binary antipodal case and assuming the optimised 

formulation of Equation (4).  This represents the best-case scenario, which is useful to understand.  It 

is also mathematically tractable, unlike cases where the cross-correlations between alphabet members 

are unknown.  The degradation in sensitivity when detecting other modulation alphabets varies on a 

case-by-case basis and cannot easily be generalised.  However, if we restrict our attention to binary 

spread-spectrum alphabets, then it can be shown that the sensitivity of SWAC will fall somewhere 

between the best-case figure and 6 dB below that, depending on the specifics of the alphabet
7
. 

3.2 Examples 
We illustrate the SWAC algorithm by way of an example. Assume an antipodal spread-spectrum 

BPSK waveform with a symbol rate of 2 symbol/s and a chip rate of 1000 chips per symbol.  The 

PSD of a passband representation of this signal (centred at approximately 2.5 kHz) is shown in Figure 

5.  Applying the SWAC algorithm to a 50 second burst of this waveform generates the autocorrelation 

spectrum of Figure 6, which shows a very strong peak at the correct symbol period of 500 ms. 

Ignoring channel impairments, we now assume this signal is received embedded in noise at a low 

SNR such that the noise masks the presence of the signal in the PSD, as shown in Figure 7.  Applying 

the SWAC algorithm to a 50 second burst of the received waveform generates the autocorrelation 

spectrum of Figure 8, which still shows a clear peak at the symbol period 500 ms.  The SWAC 

process has achieved this detection without knowledge of the centre frequency, symbol rate, chip rate, 

signal bandwidth, modulation method or symbol alphabet. 

3.3 Comments on Detection Sensitivity 
In Section 3.4 we derive a precise mathematical formulation for the detection sensitivity of SWAC.  It 

is worth noting here that the sensitivity increases proportionally with the time-span of signal 

processed.  At a given symbol period this is the same as saying the sensitivity is proportional to the 

number of symbols processed, M. 
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Figure 5: PSD for an illustrative antipodal spread-spectrum BPSK signal                               
(2 symbol/s, 1000 chips/symbol, no noise) 

 

 

Figure 6: SWAC output as a function of assumed symbol period τ, with the waveform of 
Figure 5 as input 
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Figure 7: PSD for the illustrative signal of Figure 5 embedded in Gaussian noise (white 
across the measurement bandwidth) 

 

 

Figure 8: SWAC output as a function of assumed symbol period τ, with the waveform of 
Figure 7 as input 

The SWAC plots of Figure 6 and Figure 8 were obtained using the optimum value of k0 in Equation 

(4).  In addition to the search in the τ dimension, a search was also conducted over different k0.  It was 

found that the SWAC score is relatively insensitive to the k0 assumption.  This is seen in Figure 9, 

which is a pseudo-three-dimensional plot of the SWAC score as a function of both τ and k0 (here 

shown as t0; the starting time offset as a percentage of τ).  Ten values of t0 were tried at each trial τ, in 
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steps of 10% of τ.  There is an optimum value of t0 (in this case 50%) but, regardless of the value of t0 

there is in all cases a distinct autocorrelation peak at τ = 500 ms. 

 

Figure 9: SWAC output as a function of assumed symbol period τ and t0 

Since the SWAC score is relatively insensitive to incorrect k0, rather than increase the computational 

complexity by a factor of 10 to search over k0 it is actually more productive to set k0 to zero and 

increase the amount of data processed to compensate for the incorrect k0 assumption, i.e. to overcome 

the reduced level of the SWAC peak at sub-optimal k0.  This is particularly useful when one realises 

that, in general, there will not be an exact integer multiple of waveform samples per symbol.  Hence 

over a large M the assumed symbol boundaries will drift with respect to the actual boundaries, 

regardless of the initial choice for k0.  Processing a larger M will provide a higher detector SNR and 

compensate for this effect.  It has been found that a factor of two increase in M will overcome most of 

the loss due to incorrect k0, with only a doubling of computational complexity. 

Another aspect that affects detection sensitivity is the width of the autocorrelation peak.  Spread-

spectrum modulations produce a peak that is narrow in the τ axis whereas non-spread modulations 

produce broader peaks, making the discrimination from noise more difficult, and also the ability to 

quantify the precise symbol rate at which the peak occurs.  This is seen clearly in the example plots 

shown in Figure 10 for non-spread and spread BPSK signals taken from GOES and GPS satellites 

respectively.  This shows the benefit of using a spread-spectrum form of modulation as far as 

detection is concerned.  This benefit is welcomed to help overcome the noise-bandwidth issue with 

spread-spectrum modulation (when matched filtering is not able to be used), as will become more 

clear following the analysis in Section 3.4. 

It was explained previously how SWAC is better able to detect randomly modulated signals than 

conventional autocorrelation.  This can be seen clearly in the example shown in Figure 11.  Here the 

same noisy signal of length 20 symbols is analysed using conventional autocorrelation and SWAC.  

Both methods show a peak at the correct symbol period, but the SWAC output is significantly 

stronger.  Seen another way, SWAC is able to achieve successful detection at lower input SNR values 

than conventional autocorrelation. 
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It is interesting to note that if the number of symbols processed is increased, the variance of the noise 

seen off-peak will reduce, for both the top and bottom plots in Figure 11.  However, the peak level in 

the top plot can be expected to reduce in size as the autocorrelation of the signal component averages 

closer to zero.  By contrast the peak in the bottom plot will not be affected, meaning that SWAC 

provides increased detection sensitivity when the number of symbols processed is increased. 

 

 

Figure 10: Comparison of SWAC plots for a non-spread BPSK modulation from the GOES 
satellite (top) and a spread BPSK modulation from a GPS satellite (bottom) 
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Figure 11: Comparison of conventional autocorrelation (top) with SWAC (bottom) for a 
spread-spectrum BPSK signal embedded in Gaussian noise with SNR of -10 dB 

3.4 Derivation of SWAC Sensitivity 
The sensitivity of a detector can be characterised by its output signal-to-noise ratio, SNRout.  In terms 

of evaluating detection and false alarm probabilities, the appropriate definition is given in Equation 

(5). 

 

 (5) 

 

Equation (5) holds when the SWAC output has Gaussian statistics, which we show later in this section 

to be a good approximation.  That being the case, it can be shown that the miss and false alarm 

probabilities are completely determined by the number of standard deviations between the detector 

output threshold and the expected detector outputs when signal is, respectively, present and not 
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present.  That is, the required miss and false alarm probabilities will be achieved if the difference 

between E[Dsignal] and E[Dsignal+noise] equals or exceeds the appropriate multiple of standard deviations. 

As an example, consider the case where the desired miss and false alarm probabilities are both to be a 

maximum of 10
-3

.  To achieve this, (E[Dsignal] - E[Dsignal+noise]) needs to exceed 6.2 standard deviations, 

with the detector threshold set mid-way between the two expected values
8
.  Squaring this figure 

provides the corresponding SNR, so in this example the required SNRout is ~38 (or ~16 dB). 

It is appropriate to describe the ratio of Equation (5) as an SNR because it takes the form of power 

over variance, which is consistent with how the SNR of the detector input is defined, as we will see 

below.  A more detailed derivation for Equation (5) can be found in [11]. 

Note that for spread-spectrum signals we are able to assume that the noise power is much greater than 

the signal power, so then Var(SWACsignal+noise) ≈ Var(SWACnoise).  This is why we can use 

Var(SWACnoise) for both the miss and false alarm cases. 

Note also that the (signal*noise) terms in the correlations in the SWAC algorithm are insignificant 

compared to (noise*noise) terms and can therefore be ignored. 

It is important to recognise that the detector sensitivity is signal dependent.  E[Dsignal] varies 

depending on the signal structure, the modulation type and the symbol alphabet.  It may also be data-

dependent, i.e. dependent on the specific data pattern with which the signal was modulated during the 

measurement interval. 

However, with antipodal modulation, at the value of τ corresponding to Ts, E[Dsignal] is time-invariant 

and known (ignoring channel impairments).  We therefore can proceed to formulate an expression for 

the detection sensitivity for that class of signal, noting that it represents a best-case scenario.  The 

sensitivity for other classes will be below that of antipodal modulation, depending on the degree of 

correlation between members of the signalling alphabet.  For example, consider binary orthogonal 

signalling, for which the two alphabet members have zero cross-correlation.  With random 

modulation, consecutive symbols will, on average, be the same 50% of the time and different 50% of 

the time.  When they are the same, the SWAC output will be +1; when different it will be zero.  

Hence, over a span of many symbols E[Dsignal] will be half that of the binary antipodal alphabet case.  

Therefore SNRout will be reduced by a factor of four, i.e. the detection sensitivity will be 6 dB worse 

than the binary antipodal case. 

We proceed with the derivation of the best-case sensitivity, as experienced when detecting binary 

antipodal signalling.  We begin by assuming a signal s(t) that is sampled at rate W and where: 

 each sample has the same signal power: s
2
 

 the total energy in one symbol is: Es = s
2
 . Ts 

Assume that s(t) is combined with Gaussian noise (white across bandwidth W) of variance σ
2
, i.e. the 

noise power in each sample is σ
2
.  We take [signal+noise] as the input to the SWAC detector.  The 

detector input SNR is given by SNRin = s
2
/ σ

2
. 

The number of samples delay when τ corresponds to Ts is τ = WTs. 

In the numerator of Equation (5) we seek (E[Dsignal+noise] - E[SWACnoise]).  However, for the range of 

useful SNRs (where a signal detection can be successfully accomplished), it happens that 
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(E[Dsignal+noise] - E[SWACnoise]) is closely approximated by E[Dsignal].  This can be verified by 

conducting a rather complicated derivation of E[Dsignal+noise] involving the calculation of „raw absolute 

moments‟ and evaluated using „generalised hypergeometric functions‟.  The full derivation is not 

provided here, but is planned to be published in a future paper by the author.  However, in Figure 12 

we illustrate the point for an example binary antipodal spread-spectrum waveform.  The green curve 

is E[Dsignal+noise] as a function of input SNR; in this case flat at the value of E[Dsignal] down to around     

-20 dB.  Below that it starts to rise due to the high noise power present.  The blue curve is what 

happens with the same amount of noise but with the signal removed.  What we are concerned with is 

the height of the green curve above the blue curve, which is plotted with the red curve.  At higher 

SNRs the red and green curves are essentially matched and approximately equal to E[Dsignal].  But as 

the SNR drops the gap between the curves reduces.  It has dropped to ~0.7 of maximum by the time 

the SNR is down at -15 dB.  After squaring, this will mean about 3 dB loss of sensitivity.  The 

sensitivity loss increases quickly as the input SNR drops below -15 dB. 

 

 

 

 

 

 

 

 

 

Figure 12: Variation in SWAC score versus input SNR for an illustrative spread-spectrum 
input signal in Gaussian noise.  The green curve is for [signal+noise], the blue curve is 

for [noise only] and the red curve is the difference between green and blue. 

We would, of course, prefer SWAC to maintain its sensitivity down to very low SNRs.  The author is 

currently investigating a refinement to the algorithm that will extend the useful SNR range 

downwards by several dB.  However, it is important to note that at very low input SNRs one starts to 

run into another limitation anyway: the limit of acceptable miss and false alarm probabilities due to 

the noise variance of the detector output.  That limit is likely to dictate in practical terms the effective 

sensitivity of the detector, and reduce the significance of the effect discussed above.  This is an area 

for further investigation.  For present purposes we will assume we wish to operate the detector in the 

range where (E[Dsignal+noise] - E[SWACnoise]) can reasonably be approximated by E[Dsignal]. 

Now to find an expression for E[Dsignal].  For a total measurement time of T = MTs, the expected value 

of Dsignal is simply equal to s
2
 multiplied by the total number of samples correlated, i.e. 

 

 (6) 

Hence  

 (7) 
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We define random variable U as the real part of the sample-wise complex correlation of one adjacent 

symbol pair, i.e. 

 

 (8) 

 

With only noise input to the detector, each yk and yk+τ are independent complex Gaussian noise values 

N1 and N2. 

 (9) 

 

U is the sum of many (τ) such terms, each with normal-product distribution, with zero mean and 

variance σ
4
.  Hence the summation will approach a Gaussian distribution for large τ, with zero mean 

and variance τ σ
4
.  Since U is the real component only of the summation, the variance of U is given by 

 

 (10) 

 

The question we need to address is… what is Var(|U|)?  To find this we start by obtaining the “first 

central absolute moment” of U.  Definitions of the various moments of Gaussian distributions can be 

found in [12]. 

 

 

 

 (11) 

 

Then find the “second central absolute moment” of U: 

 

 

 

 (12) 

 

Then we find Var(|U|) as follows: 
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 (13) 

 

If we compare Equation (13) with the expression for Var(U) in Equation (10) we see that the effect of 

taking the absolute value of U is to reduce the variance by a factor of ~2.75. 

SWACnoise is the sum of M independent random variables, each of variance Var(|U|).  Hence 

 

 

 

 (14) 

 

In the vicinity of τ = WTs  

 (15) 

 

Finally we obtain the following expression for SNRout: 
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This formulation is useful for comparing against simulations but is deceptive in the way it suggests 

SNRout increases with W.  In fact SNRin decreases with W, because noise power = W.N0 (where N0 is 

the noise spectral density).  Hence SNRout actually decreases with W. 

We re-formulate Equation (16) using the following substitution: 

 

 

 (17) 

 

Substituting into Equation (16) gives the following expression for SNRout: 

 

 

 

 

 

 (18) 

 

First we should note that this is the optimum detector sensitivity in the absence of Doppler 

acceleration or ISM impairments.  Each of these will degrade detector sensitivity and place limits on 

practical measurement time. 

As expected for an autocorrelation-based detector, SNRout is proportional to the square of SNRin.  This 

results in a significant penalty when SNRin is low. 

The denominator term WTs is the factor by which the noise bandwidth exceeds the symbol rate.  The 

smallest this can get is when W is equal to the spread-spectrum signal bandwidth.  We see that there is 

a detection benefit if the spreading factor is reduced because it allows smaller W.  There is a trade-off 

when choosing the spreading factor between interference immunity and noise sensitivity. 

Importantly SNRout increases with T (directly proportional to the number of symbols processed, M).  

The significance of this is that the sensitivity loss due to the squaring of SNRin (and any other causes) 

can be recovered by increasing M.  One can process as many symbols as needed to achieve a target 

detection reliability in terms of miss/false-alarm probabilities.  The required M to achieve acceptable 

miss/false-alarm probabilities will be longer with lower input SNR.  However, if a sufficiently long 

segment of signal is available, detection can be made arbitrarily reliable (subject to the deterioration 

of detection sensitivity experienced at extremely low SNRs, as mentioned earlier in this section).  This 

makes it possible to achieve signal discovery at SNRs well below what is needed to extract the 

information content of the signal.  This is significant for SETI because it permits early discovery of a 

signal using a radio telescope that is smaller than what will later be needed for the data extraction 

phase. 

3.5 Sensitivity Comparison 
Using antipodal spread-spectrum modulation as an example, the sensitivity expressions for three 

detector types are given below. 
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Matched Filter 

 

 

SWAC 

 

 

 Energy Detector  

 

 

Figure 13 plots detector output SNR versus input SNR for the matched-filter, SWAC and energy-

detector cases, for an illustrative signal format as described in the figure caption.  As expected, the 

matched filter is superior at all input SNRs, given that it represents the theoretical optimum receiver 

type.  However in a SETI context where the modulation waveforms are unknown, a matched filter is 

not available
9
.  SWAC and energy detection track each other with the same slope (due to the squaring 

of SNRin) but SWAC maintains a consistent 10 dB advantage.  Note that the formulas derived for 

SWAC and energy detection are only valid for low SNRin due to assumptions made about the 

statistics of [signal+noise] approaching those of [noise only].  Above approximately 10 dB SNRin the 

output SNR is expected to tail off and asymptotically approach the matched filter performance. 

Note that Figure 13 relates to the performance of differing detection methods, with no consideration 

of the differing computational complexities inherent to each method.  The computational requirements 

of SWAC are discussed in detail in Section 4. 

3.6 SWAC Refinements 
Note that the SWAC algorithm assumed in Figure 13 is the “basic SWAC” approach that involves 

correlations between consecutive symbols.  The concept can be generalised to include other pair-wise 

correlations of symbols in close vicinity.  We refer to the generalised case as near-neighbour SWAC 

to differentiate it from the basic algorithm, which we call adjacent-symbol SWAC. 

It is preferable to limit the time separation of correlated symbols to reduce the degradations due to 

Doppler drift and time-varying channel characteristics – as discussed in Section 3.7.  However, 

additional correlation pairs will increase the effective M for a given length of waveform.  As an 

example, correlating each symbol with 1Ts, 2Ts and 3Ts delayed versions of the signal will yield an 

effective 3-fold increase in M, which should translate to an almost 5 dB improvement in detection 

sensitivity.  The gap between SWAC and matched filter performance can therefore be closed to a 

significant extent by performing additional processing of the same M-symbol span of received 

waveform.  This improvement is possible because it exploits the independence of the noise present in 

the samples of each symbol – an improvement that is not possible with an energy detector. 
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Figure 13: Sensitivity comparison of three detector types, assuming an antipodal spread-
spectrum BPSK signal in Gaussian noise (symbol rate 1 symbol/s, spreading factor 500, 

sampling rate (=noise bandwidth) 1kHz, measurement interval 100 seconds (M=100)) 

All the approaches discussed so far assume pair-wise cross-correlations between two nearby symbols.  

Another way to improve SWAC performance, particularly at the low end of the operating SNR range, 

is to perform cross-correlations of multiple-symbol groupings with other multiple-symbol groupings.  

This will have the effect of increasing the effective value of τ, and hence increase the degree of noise 

averaging before the absolute value is taken.  For the same noise variance this will result in a lower 

mean noise output, thus reducing the sensitivity loss effect illustrated in Figure 12. 

The investigation of these and other refinements to SWAC is the subject of ongoing research by the 

author. 

3.7 Effect of Channel Impairments 

3.7.1 Doppler 

Interstellar signalling involves the propagation of a signal from a transmitter, through the interstellar 

medium (ISM), to one or more receivers.  The relative motions of the transmitter, ISM and receiver 

give rise to Doppler effects observed by the receiver.  Motions with constant velocity will result in a 

static time dilation, whereas if the motions involve any acceleration components there will be a 

dynamic time dilation, referred to as „Doppler drift‟. 

SWAC is insensitive to static Doppler effects because consecutive symbols are affected equally.  The 

only consequence is that the value of τ at which the SWAC peak occurs will move very slightly, 

because of the lengthening (or shortening) of the symbol interval due to the time dilation.  SWAC is, 

however, sensitive to Doppler drift because consecutive symbols experience slightly different degrees 

of time dilation.  Over longer processing timespans there may be a „smearing‟ of the SWAC peak 

across multiple delay bins.  The frequency offset and phase shift from one symbol to the next will also 

vary, which will reduce sensitivity and preclude the use of the optimisation described in footnote 6.  

The effect is less significant for shorter symbol periods because consecutive symbols are closer 

together in time.  For example, the effect of the Earth's rotation on a signal centred on 10 GHz will be 
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insignificant for symbol rates greater than 100 symbol/s.  However, such a constraint can be avoided 

completely if Doppler compensation is employed.  The transmitter and receiver are both aware of the 

component of their own acceleration along the line of sight.  They can each therefore correct for this 

acceleration by appropriate frequency shifting processes synchronised to their known accelerations
10

.  

There is a compelling case for Doppler compensation to be routinely employed for both METI and 

SETI.  This would reduce the difficulties a receiver will face when attempting to detect signals of low 

symbol rate – and low symbol rates are arguably more desirable for interstellar signalling to constrain 

transmitter power requirements. 

3.7.2 Interstellar Medium 

The ISM will also introduce time-varying dispersion and scattering effects that will degrade any 

signal propagating through it and make detection at a receiver more challenging [13].  Together 

dispersion and scattering cause complicated delay-spread behaviour for wideband signals, which 

results in waveform distortion and intersymbol interference (ISI) effects that are difficult to mitigate 

prior to discovery of the signal
11

.  These effects can seriously compromise the performance of a 

matched-filter detector.  However, autocorrelation detection is relatively immune to the effects of 

dispersion and scattering.  Successive symbols experience similar distortion to their waveforms, hence 

retaining high cross-correlation.  ISI can be more problematic but its significance is reduced when 

operating with longer symbol periods and/or at higher carrier frequencies. 
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4. SWAC Computational Complexity 

This section analyses the computational complexity of SWAC and compares it with conventional 

autocorrelation. 

4.1 Conventional Autocorrelation – Frequency Domain 
It is well known that a computationally efficient way to compute the autocorrelation of a sequence of 

discrete samples is to take advantage of the Wiener-Khinchin theorem, which involves taking the Fast 

Fourier Transform (FFT) of the time samples, taking the magnitude-squared of the resultant frequency 

domain samples, then performing an Inverse FTT to obtain the autocorrelation function. 

A commonly employed method of obtaining the autocorrelation of a long sequence of samples is to 

partition the sequence into a number of smaller sub-blocks and perform FFTs on these sub-blocks.  To 

deal with edge effects, typically there will be twice as many sub-blocks used, each 50% overlapping 

with its neighbours, as shown in Figure 14. 

 

Figure 14: Overlapped sub-blocks for FFT based computation of autocorrelation 

Each FFT is of length (2*Dmax), which produces an autocorrelation delay range of ±Dmax. 

The number of FFTs required is M ≈ 2*N/(2*Dmax) = N/Dmax.  Each FFT requires 

(2*Dmax/2)log2(2*Dmax) = Dmaxlog2(2*Dmax) complex multiplications and (2*Dmax)log2(2*Dmax) 

complex additions.  Each FFT also requires windowing, hence a further (2*Dmax) complex 

multiplications.  Then each point in each FFT output needs to be squared, hence another (2*Dmax) 

complex multiplications.  Finally, the squared output points of each FFT needs to be added, requiring 

(N/Dmax)*(2*Dmax) = 2N complex additions. 

The Inverse FFT to produce the autocorrelation spectrum requires Dmaxlog2(2*Dmax) complex 

multiplications and (2*Dmax)log2(2*Dmax) complex additions. 

Ignoring normalisation, this gives totals of approximately: 

 (N+Dmax)log2(2*Dmax) + 4N complex multiplications, and 

 2(N+Dmax)log2(2*Dmax) + 2N complex additions. 

If we assume an arithmetic unit that performs complex multiplications and additions in the same 

number of clock cycles, then the total complexity is C ≈ 3(N+Dmax)log2(2*Dmax) + 6N.  This 

expression is approximately proportional to Nlog2Dmax, a well-known result for autocorrelation using 

the Wiener-Khinchin algorithm. 

4.2 Conventional Autocorrelation – Time Domain 
Autocorrelation can also be computed entirely in the time domain using the so-called „brute force‟ 

approach.  Here the correlation score is calculated for each individual delay value by accumulating the 

product of each sample with the sample at the given delay value, as depicted in Figure 15.  While this 
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is conceptually much simpler than the Wiener-Khinchin algorithm, it results in much larger 

computational complexity, particularly for large N. 

 
Figure 15: Sample-wise multiply-accumulate operations for time-domain computation of 

autocorrelation 

Firstly, let us assume that all delays are to be evaluated from 1 to Dmax (which will provide us with the 

same set of output data as the Wiener-Khinchin algorithm).  Normally Dmax << N so it is a close 

approximation to say that for each autocorrelation delay value there are ~N complex multiplications 

and N complex additions.  Since there are Dmax delays to evaluate, this gives totals of approximately: 

 N*Dmax complex multiplications, and 

 N*Dmax complex additions. 

Again, if we assume an arithmetic unit that performs complex multiplications and additions in the 

same number of clock cycles, then the total complexity is C ≈ 2*N*Dmax.  This expression is 

proportional to N*Dmax, a well-known result for autocorrelation using the brute force approach. 

4.3 SWAC 
SWAC is similar to conventional autocorrelation but with the difference that (assumed) symbols are 

effectively being „folded‟ onto one another, and the absolute value of each symbol‟s contribution to 

the autocorrelation is taken before the accumulation.  The sample sequence is partitioned into M sub-

blocks of length Dx, as depicted in Figure 16.  Each Dx from 1 to Dmax is trialled, calculating the 

SWAC score according to Equation (4) in Section 3.1, with τ set to Dx for each trial. 

 

Figure 16: Partitioning into sub-blocks for SWAC processing  

The method for implementing this in the time domain is conceptually simple and requires just minor 

modifications to conventional time-domain autocorrelation.  For a frequency-domain implementation 

of SWAC the time-folding operation is problematic, as is the nonlinear abs() function.  It may be 

possible to derive a frequency-domain implementation of SWAC, but this has not yet been 

accomplished by the author. 
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As with conventional autocorrelation performed in the time-domain, let us assume that all delays are 

to be evaluated from 1 to Dmax.  We assume Dmax << N so the number of symbols to process in a given 

trial is M ≈ N/Dx.  Each cross-correlation between adjacent symbols requires Dx complex 

multiplications and Dx complex additions.  The total computations for the whole block of samples at a 

given Dx is ≈ N complex multiplications and ≈ N complex additions.  Since there are Dmax delays to 

evaluate, this gives totals of approximately: 

 N*Dmax complex multiplications, and 

 N*Dmax complex additions. 

Again, if we assume an arithmetic unit that performs complex multiplications and additions in the 

same number of clock cycles, then the total complexity is C ≈ 2*N*Dmax.  This is in fact the same as 

for conventional autocorrelation in the time domain. 

At this point we note an important feature of both time-domain conventional autocorrelation and 

SWAC, which is that the computational complexity is directly proportional to the number of delay 

values to be evaluated.  By contrast, the Wiener-Khinchin algorithm evaluates all delay values at one 

fell swoop.  If the entire range of delay values is not needed, the time-domain approach becomes 

comparatively more efficient.  For small delay ranges the time-domain approach may in fact require 

fewer total computations than the frequency-domain approach. 

There are two ways that the range of delay values to be evaluated can be constrained.  The first 

assumes the full sample resolution is maintained and that a decision has been made to limit the delay 

range between selected Dmin and Dmax values (on the basis of some other information constraining the 

range of symbol rates under consideration for the search).  The second way is to search the full range 

from 1 to Dmax but more coarsely, i.e. by not evaluating every delay value in this range.  This 

approach is possible without penalty if the bandwidth of the target signal is less than the sampling 

rate.  A similar reduction in complexity can be obtained in this scenario by decimating the sample 

stream such that the sampling rate is closer to the minimum needed to represent the signal bandwidth, 

prior to performing the SWAC processing.  However, when the target signal bandwidth is an 

unknown, the appropriate degree of decimation is also unknown.  Therefore, some trial-and-error 

could be needed. 

One possible strategy to reduce the overall computational requirement would be to search initially 

over a coarse sample resolution, and then where the SWAC output suggests that some interesting 

feature may be present, search in that vicinity using progressively higher sample resolutions until the 

strength of the feature is maximised.  However, care must be taken to ensure that the initial resolution 

is not too coarse for the feature to „slip through the net‟ completely. 

4.4 Comparison 
To illustrate relative complexities we analyse the following example scenario.  We wish to process 

data with delays up to a maximum of Dmax = 16,384 and for data segments of length ranging from 

(10
1
*Dmax) to (10

4
*Dmax).  We consider the total computational complexity C as the sum of the 

number of complex multiplications and additions.  Figure 17 plots C versus N for three cases: 

(1) conventional autocorrelation using FFTs (evaluating 16,384 delays); 

(2) conventional autocorrelation or SWAC in the time-domain (evaluating 16,384 delays); and 

(3) conventional autocorrelation or SWAC in the time-domain (evaluating 50 delays). 

The computational efficiency of frequency-domain autocorrelation is clear to see when the entire 

range of delay values is required.  However, if the delay range of interest happens to be narrower (in 

this case 50 values), the complexity of the time-domain algorithms is seen to be very similar to that of 

the frequency-domain approach. 
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At the time of writing, FFT-based autocorrelation is generally considered to be feasible at real-time 

speeds, since it is similar in complexity to ordinary Fourier spectral analysis that is routinely 

implemented in radio telescope back-ends.  SWAC initially appears to be significantly more complex, 

because it appears necessary to compute it in the time domain – raising concerns about the ability to 

run SWAC in real-time.  However, this assumes all delay values from one to the maximum are 

required, which may not necessarily be the case.  This gives us hope that real-time SWAC processing 

may be practical even with current processor technology.  As processing power increases over time, 

and/or more efficient methods for computing SWAC are developed, the need to constrain the 

evaluated delay range with SWAC will diminish. 

 

Figure 17: Computational complexity versus N for different autocorrelation-based 
algorithms  

The overall SWAC computational complexity is a function of both the time sample resolution (which 

determines the number of delay values to evaluate) and the total time-span of signal being processed 

(number of assumed symbols M) – both of which influence the detection sensitivity.  So there is a 

trade-off (as with all searches) between computational requirements and the parameter space that can 

be searched, including threshold SNR.  For any practical implementation of the SWAC algorithm this 

trade-off should be given careful attention so as to optimise the use of the available resources. 
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5. Conclusions and Recommendations 

This section summarises the findings of this study and makes some recommendations for future work. 

5.1 Conclusions 

 Wideband cyclostationary signals can be detected using autocorrelation without a priori 

knowledge of the signal‟s structure or carrier frequency.  Detection is possible by searching 

over one dimension: symbol period. 

 Symbol-wise autocorrelation (SWAC) is more effective than conventional autocorrelation for 

detecting randomly modulated signals. 

 SWAC detector sensitivity is maximised with binary antipodal spread-spectrum signalling.  A 

mathematical expression for sensitivity was derived for this scenario.  It is shown that the 

basic SWAC algorithm is ~10 dB better than energy detection.  Further gains of 3 to 5 dB can 

be expected from ongoing SWAC refinements. 

 SWAC sensitivity is inferior to a matched filter detector, but in a SETI scenario the waveform 

parameters needed to implement a matched filter are not known.  Therefore SWAC appears to 

represent the next best option.  Its sub-optimality can be overcome by processing longer time-

segments of received waveform data. 

 The scaling of sensitivity with time allows the detection sensitivity to be made arbitrarily 

reliable, given access to sufficient signal.  This allows the possibility of discovering the 

presence of a wideband beacon signal at an SNR well below what is needed to extract the 

information content of the signal.  This is significant for SETI because it permits early 

discovery of a signal using a radio telescope that is smaller than what will later be needed for 

the data extraction phase. 

 The computational complexity of SWAC is the same as conventional autocorrelation 

performed in the time domain.  Whilst the frequency-domain computation of autocorrelation 

is more efficient than time-domain computation (at least for evaluating wide delay ranges), it 

is unclear whether frequency-domain methods can be applied to SWAC.  To achieve real-

time SWAC processing at the present time, it may be necessary to limit the number of delays 

evaluated, either by constraining the symbol period search range or by using coarser time 

resolution.  This concern will diminish over time as available processing power increases, 

and/or more efficient implementations of SWAC are developed. 

In summary: the outcomes of this study suggest there is a strong argument to be made for including 

autocorrelation detection (both conventional autocorrelation and SWAC) in future SETI programmes 

on the ATA and other radio telescopes. 

5.2 Recommendations 

 The effects of Doppler acceleration and the ISM must be taken into account when 

determining the sensitivity of a practical SWAC detector.  These effects require further 

study and should be included in future simulation environments for evaluating SWAC. 

 Extension of the basic adjacent-symbol SWAC algorithm to more powerful near-

neighbour algorithm variants should be pursued and the performance gains quantified 

through analysis and simulation. 

 Techniques to more efficiently compute the SWAC algorithm should be explored. 

 Both conventional autocorrelation and SWAC variations should be incorporated into the 

setiQuest project, including the ability to display output results in the form of AC 

waterfall plots. 

 In addition to setiQuest, autocorrelation and SWAC should be considered for real-time 

implementation in the ATA signal processing back-end. 
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 SWAC is just one example of a new detection method that can broaden the SETI search 

space.  Investigation of other techniques offering different detection capabilities should 

continue generally within the SETI Institute and elsewhere to identify new approaches for 

incorporation into setiQuest and/or the signal processing back-ends of the ATA or other 

radio telescopes. 

 New algorithms arising from the setiQuest project are particularly applicable to the 

forthcoming Square-Kilometre-Array (SKA) radio telescope.  An opportunity exists now 

to begin to educate the SKA community on emerging capabilities to conduct wideband 

SETI.  The ATA can serve as the ideal platform to validate and refine these techniques 

ahead of implementation on the SKA. 
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