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Abstract

We present results of adaptive canceller experiments at the Rapid Prototyping Array
which compare the quality of interference suppression achieved in the voltage and power
domains. It is shown that if the optimal complex weights used to model the interference
are stationary over the length of the time average, then the same level of suppression is
achieved. A limitation of both methods is that the system noise in the reference voltage leads
to an attenuation of the interference estimate. Using two reference signals with uncorrelated
system noise improves the result, especially in the case where the reference signal has a low
interference-to-noise ratio. For GLONASS and GPS interference on a baseline of a few tens
of metres, it is shown that the complex weights are stable for several hundred milliseconds.
A reduction of at least 36 dB of RFI power was achieved, this number limited by the amount
of data available.

1 Introduction

In radio astronomy one is usually interested in the power distribution over the celestial sphere.
Radio arrays generally combine the voltage output of many receivers in an attempt to measure
this power. Techniques which remove unwanted power from this output have advantages over volt-
age techniques since they are applied to the integrated power, rather than the individual voltage
samples1. On the other hand, if the individual voltages are needed (for example some of the SETI
backends process the voltage streams rather than the power), these power-domain techniques will
generally be inadequate.

This report attempts to make a quantitative comparison between two radio frequency interference
(RFI) mitigation techniques applied to data collected at the Rapid Prototyping Array (RPA). In
particular, voltage-domain techniques which are applied to the individual antenna voltages are
compared with power-domain techniques which attempt to excise the RFI from the statistical
correlations of antenna voltages. It has been conjectured that the level of RFI suppression achiev-
able should be the same under certain conditions [1]. In section 2 an overview of the theory behind
reference antenna based RFI cancellation using the Wiener solution is presented. This is followed
in section 3 by some results of this theory applied to data containing satellite interference collected
at the RPA.

Some of the factors that can affect RFI mitigation techniques include the length of time averages
relative to the stationarity of the signal, (e.g. that of the transmitted signal itself, transmitter
motion relative to delay-tracking centre, transmitter motion through antenna gain side lobes,

1Even though post correlation or post beamforming algorithms are applied less frequently, resulting in a smaller
amount of processing, they need to be applied to each baseline or separate beam. Applying interference mitigation
at an antenna level should become more efficient when the number of beams/baselines exceeds the number of
antennas multiplied by the number of samples per integration.
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stability of side lobes, multipath statistical stationarity, etc.), the effect of the number of bits at
different stages of the receiver system, fractional-sample delay in XF correlators, and out of band
RFI (ie. interference in the RF band before IF filtering). These issues need to be weighed up
against the cost and complexity of both the front and back ends of a desired receiver system.

2 Reference Antenna Based RFI Cancellation Theory

In this section the voltage and correlation equations assumed for the RFI mitigation techniques
are given. From these, reference antenna based RFI mitigation algorithms are derived. Unless
otherwise stated, it is assumed that there is only one correlated interferer (that is, any correlation
between the reference antenna signal and any of the primary antenna signals originates from
a single source. Multipathing is neglected in this investigation). It is also assumed that any
parameters used to model the interference are stationary on some time interval τcs (covariance
stationary interval). Model parameters often come in the form of complex weights which affect
the amplitude and phase of a reference signals spectrum so that it best matches that of the
interference in any desired signal. They will usually change if an interfering satellite’s position
changes relative to either the pointing direction of the antennas (since the satellite moves through
the antenna gain patterns), or the direction of the interferometers phase reference position (since
the geometric delay of the signal will change).

The weights are usually calculated from either the lag or the frequency spectra of the signals.
They are a function of the cross-correlation of the reference and primary signals, and are scaled
in some way by the auto-correlation of the reference signal. This implies that if the relationship
between the cross and auto correlations changes, then so will the weights. It also means that the
statistics of the signal can change and not affect the weights so long as the overall effect on the
relationship is zero. Care needs to be taken that the signals have not become decorrelated (due,
for example, to bandwidth smearing or fringe-rotation decorrelation). Decorrelation often occurs
when the stationarity assumptions have been broken. Throughout this report it is assumed that
the interfering signal is in no way decorrelated and also that it is not strong enough to saturate
any part of the system.

The IF voltage streams from the primary antennas (those pointing towards the astronomy field
of interest) and the reference antenna/s (those pointing towards the interferer) consist of three
components: A system noise voltage, n(t), a voltage due to all astronomical sources, s(t), and a
voltage resulting from interference, i(t). It is assumed that n(t) is Gaussian, and that only one
point source contributes to s(t) and one interferer to i(t). It is also assumed that all three voltage
components are independent.

Consider a single reference antenna located at the reference position of the array. Let τs(t, k) and
τi(t, k) represent the time delay between the reference antenna and the kth primary antenna of
the astronomy and RFI signals respectively. The voltage in the IF stream of a single polarisation
of the kth primary antenna is

vAk
(t) = nAk

(t) + gi,Ak
(t, ν)i(t− τi,k) + gs,Ak

(t, ν)s(t− τs,k),

where nAk
(t) is the system noise in the kth antenna, gi,Ak

is the complex gain in the direction of
the interferer for the kth antenna, etc. The voltages in the two orthogonally polarised IF streams
from the reference antenna are

vRx(t) = nRx(t) + gi,Rx(t, ν)i(t) + gs,Rx(t, ν)s(t),
vRy(t) = nRy(t) + gi,Ry(t, ν)i(t) + gs,Ry(t, ν)s(t),
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where the x and y subscripts denote the two orthogonal polarisations of the reference antenna,
which are assumed to have independent system noise and be 100% polarised2.

The integration and frequency intervals used are assumed to be narrow enough for the complex
gains of the receiver systems, (g(t,ν) terms), to be essentially constant over the intervals. When
the integrations become long enough for the stationary signal assumptions to fail, the quality of
the RFI mitigation techniques will start to decline.

Transforming to the frequency domain, with subscript ν indicating a quasi-monochromatic fre-
quency band centred at frequency ν, we have

vνAk
(t) = nνAk

(t) + gνi,Ak
(t)iν(t)e

j2πντi,k + gνs,Ak
(t)sν(t)e

j2πντs,k

vνRx
(t) = nνRx

(t) + gνi,Rx
(t)iν(t) + gνs,Rx

(t)sν(t)
vνRy

(t) = nνRy
(t) + gνi,Ry

(t)iν(t) + gνs,Ry
(t)sν(t)

(1)

For the rest of this document it is assumed that the gain of the reference antenna in the direction
of the astronomy signal (ie. gs,R) is zero. This will generally not be the case in reality, since a ref-
erence antenna will usually have some gain towards the sky, but for the purpose of this document
the effect is assumed negligible. Any correlation of the astronomy signal between the reference
and primary antennas will result in suppression of the astronomy signal.

2.1 Voltage-Domain RFI Cancellation

When using digital signal processing techniques in radio astronomy, care should be taken when
naming processes and variables. Many communication reports talk about retrieving a desired
signal from a noisy signal, and call the remaining signal the error. In radio astronomy RFI mit-
igation applications, the ”desired” signal is usually the interference, and the ”error” is actually
desired. For this reason I will call the extracted signal the interference or model signal, and the
signal remaining the astronomy or residual signal. Also, techniques which are applied to the volt-
ages have been called ”pre-correlation” methods while techniques applied to the statistics are often
called ”post-correlation” methods. The problem with this is that many voltage-domain techniques
use the correlations in the RFI voltage modeling process, and therefore are also post-correlation
techniques in a sense. For this reason they will be distinguished as voltage and power domain
techniques. The standard derivations in this section can be found in many DSP texts, such as [6]
and [4], and their applications in radio astronomy have been described in [3].

A standard method for predicting the properties of the interference in the astronomy antennas is
to collect a copy of the interference that does not contain any of the astronomy information. This
reference signal is used to form a model of the interference in the astronomy antenna signals. The
model signal can be constructed by summing together many weighted versions of the reference
signal. These weights are complex, containing a time delay and a scaling factor. The weights which
reduce the power in the residual signal must also be the weights which reduce the interference,
since it is the only correlated component of both voltage streams. In the frequency domain, this
is equivalent to weighting and phase shifting each narrow sub-channel of the Fourier transformed
reference voltage. This is easier to interpret, so the following equations all refer to operations on
each narrow sub-channel of the frequency spectra, and all time integrations are carried out on

2The 100% polarised interference assumption might at times fail completely for the RPA with transmitters
at the horizon. Many transmitters are linearly polarised, and since an X/Y mount has linearly polarised feeds
rotating as a dish tracks around the horizon, there will be positions at which one of the feeds lines up with the
transmitters polarisation. Both GLONASS and GPS satellites transmit circularly polarised signals and so the
assumption should be alright for their interference.
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each channel separately. See the appendix for the lag-domain version. The x polarisation of the
residual voltage stream is given by

rνAx
(t) = vνAx

(t)− wνAx,Rx
(t)vνRx

(t), (2)

where wνAx,Rx
(t) is a vector containing the complex weights for each sub-channel. If the integra-

tions are very long relative to the sample time (so that uncorrelated noise terms essentially drop
to zero), but not long enough for the complex weight vector to change appreciably, then the power
of the residual voltage is

< r2
νAx

(t) >≈< v2
νAx

(t) > −wνAx,Rx
< vνAx

(t)v∗νRx
(t) > +w2

νAx,Rx
< v2

νRx
(t) > . (3)

where the averaging ”<>” is over time, τA, and frequency sub-channel ∆ν. In the complex weight
domain < r2

νAx
(t) > is a paraboloid with a definite minima. This minima must occur at the

optimal weights which minimise the output power of equation 3. They are found by setting the
derivative with respect to wνAx,Rx

(t) to zero. Differentiating equation 3 gives the optimal weights
for the x polarisation of astronomy antenna A at time t as

wνAx,Rx
(t) =

< vνAx
(t)v∗νRx

(t) >

< v2
νRx

(t) >
. (4)

Applying these weights to the residual voltage from equation 2 gives

rνAx
(t) = vνAx

(t)−
< vνAx

(t)v∗νRx
(t) >

< v2
νRx

(t) >
vνRx

(t).

To investigate how well this cancellation should do, the residual power spectrum is estimated.
From now, unless describing individual voltages, the explicit notation showing that a variable is
time varying, (t), will be dropped. In general if a quantity is inside angle brackets then it may be
time varying. If the complex weights are constant over the integrations, which are long enough
for the (independent, and therefore zero mean) system noise terms to have averaged very close to
zero, then the power in the residual signal of antenna A is

Rν(Ak, Ak) = < rνAk
r∗νAk

>

≈
〈(

vνAx
−

<vνAx
v∗νRx

>

<v2
νRx

>
vνRx

)(
v∗νAx

−
<v∗νAx

vνRx
>

<v2
νRx

>
v∗νRx

)〉

≈
〈
vνAx

v∗νAx

〉
−

<vνAx
v∗νRx

><v∗νAx
vνRx

>

<v2
νRx

>
,

(5)

where upper case characters represent the power of the lower case voltage variables. These ex-
pectation values are necessarily estimated by a finite number of samples, meaning that the noise
is never completely averaged to zero. This will lead to injection of noise and an attenuation of
the RFI power estimate. This limitation is discused in the next section. The striking thing about
equation 5 is that if one is interested in power and is not concerned with the individual voltages,
the RFI cancellation can be performed using these final statistical values [5]. These integrations
may be over many thousands of samples, so applying the correction once at the end saves a lot
of processing effort and time. To investigate the remaining RFI power, the voltage streams in
equation 5 are broken in to their components

4



Rν(Ak, Ak) ≈ < n2
νAk

> + < g2
νs,Ak

> Sν+ < g2
νi,Ak

> Iν−
<gνi,Ak

g∗νi,Rx
>Iν<g∗νi,Ak

gνi,Rx
>Iν

<n2
νRx

>+<g2
νi,Rx

>Iν

≈ < n2
νAk

> + < g2
νs,Ak

> Sν+(
1−

(
1 +

<n2
νRx

>

(<g2
νi,Rx

>Iν)

)−1
)

< g2
νi,Ak

> Iν

(6)

Equation 6 shows that even for the ideal case, where the weights are stationary and all of the
uncorrelated noise is average out, not all of the RFI power is removed from the astronomy antenna
power. A fraction related to the interference power to noise power ratio (INR) in the reference

signal remains. The INR in the reference signal (INRR) is defined as
(<g2

νi,Rx
>Iν)

<n2
νRx

>
and can be

increased if a second reference antenna is used and two models are formed. The system noise
terms in these models should be uncorrelated, and so average towards zero during the integration.
The two reference signals used here are the two orthogonally polarised voltages from the reference
antenna. This is convenient but not the only solution, and only applicable if the interfering signal
is 100% polarised. When the two polarisations are not completely coherent, there will be an
attenuation of the RFI power estimate. Also, there is usually cross-talk between the polarised
feeds of antennas, so the cross-correlated system noise terms will not average towards zero. This
is discussed in the next section. The system and interference are assumed ideal for the time
being, so that the advantage of using two reference signals is obvious. Possible models for these
dual-reference weights are given below and are indicated by w′

νAx,Rx
(t) and w′

νAx,Ry
(t).

w′
νAx,Rx

(t) =
<vνAx

(t)v∗νRx
(t)>

<vνRx
(t)v∗νRy

(t)>
,

w′
νAx,Ry

(t) =
<vνAx

(t)v∗νRy
(t)>

<vνRx
(t)v∗νRy

(t)>
.

(7)

These weights are likely to be subset of the more general ”multiple interferer” weights proposed
by Geoffrey Bower [2]. It is shown in section 3 that the weights given in equation 7 do not remove
interference to the same level as the dual reference signal power-domain method to be discussed
shortly. It may be that there are terms missing from the weights given in equation 7. These
weights are applied to the reference voltages in the following manner,

r′νx,Ax
(t) = vνAx

(t)− w′
νAx,Rx

(t)vνRy
(t),

r′νy,Ax
(t) = vνAx

(t)− w′
νAx,Ry

(t)vνRx
(t).

The residual power spectrum of equation 6 is now estimated using the cross-correlation of these
two residual voltages

R′
ν(Ak, Ak) = < r′νx,Ak

r′∗νy,Ak
>

= < n2
νAk

> + < g2
νs,Ak

> Sν+ < g2
νi,Ak

> Iν−
<gνi,Ak

g∗νi,Rx
>Iν<g∗νi,Ak

gνi,Ry
>Iν

<gνi,Rx
g∗νi,Ry

>Iν

= < n2
νAk

> + < g2
νs,Ak

> Sν .

(8)

The difference between equations 5 and 8, resulting from the bandpass of the single reference
signal in equation 5 is

∆Rν(Ak, Ak) =< (gνi,Ak
iν(t))

2 > (1− 1

1 + 1/INRR

). (9)
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Similarly to the single reference antenna result from equation 6, if the integration time is short
enough so that the optimal complex weights for the interference model remain stationary, all of
the quantities can be estimated after correlation, and the power subtracted there.

2.2 Power-Domain RFI Cancellation

In section 2.1 it was shown that if the desired quantities of an observation are the power spec-
tra, then the RFI suppression achieved by filtering individual voltages can be replicated after the
power spectra are formed. This is only true for situations where the integration is taken over a
time interval in which the optimal complex weights given by the Wiener solution remain constant.
The main limitation in both cases is the interference-to-noise ratio in the reference signal, which
results in a reduction in the amount of RFI subtracted. The situation can be improved by using
a second reference (eg. two polarisations). In reality there is likely to be some correlation in the
system noise of the two reference signals, which means that the interference-to-noise limitation is
not removed, just made a lot better since the level of correlation will be much smaller. Another
problem is noise added to what would be the perfect result due to finite sample integrations, finite
FFTs, and other sampling effects. Some of these noise components are considered below.

Assuming that each temporal integration of length τA is in the regime where τA << τcs and
∆ν << ∆νcs (ie. there is insignificant decorrelation occurring over the times and frequency
channels of interest), and using the geometric delay notation τi,kl = τi,k − τi,l, the auto and cross-
correlations of all antennas are formed

Cν(Ak, Ak, τA) = < vνAk
v∗νAk

>

= < n2
νAk

> + < g2
νi,Ak

> Iν+

= < g2
νs,Ak

> Sν +NAk,Ak
(τA),

Cν(Ak, Al, τA) = < vνAk
v∗νAl

>

= < gνi,Ak
g∗νi,Al

ej2πντi,kl > Iν+ < gνs,Ak
g∗νs,Al

ej2πντs,kl > Sν+

= NAk,Al
(τA),

Cν(Ak, Rx, τA) = < vνAk
v∗νRx

>

= < gνi,Ak
g∗νi,Rx

ej2πντi,k > Iν +NAk,Rx(τA),

Cν(Rx, Rx, τA) = < vνRx
v∗νRx

>

= < n2
νRx

> + < g2
νi,Rx

> Iν +NRx,Rx(τA),

Cν(Rx, Ry, τA) = < vνRx
v∗νRy

>

= < gνi,Rx
g∗νi,Ry

> Iν +NRx,Ry(τA).

(10)

The N (τA) terms correspond to uncorrelated noise which is present in the correlations, but as-
sumed to be thermal noise which will integrate to zero power as the integration time τA approaches
infinity. There are many factors which can contribute to these terms, some of which, such as re-
ceiver cross-talk, may result in non-zero mean power. This needs to be looked into thoroughly,
but for the time being is assumed to be mainly due to finite integrations of white thermal noise.
The power-domain relations from section 2.1 can now be created from the correlations of equation
10. For a single reference signal the models are
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Mν(Ak, Ak, τA) = Cν(Ak,Rx)C∗ν (Ak,Rx)
C∗ν (Rx,Rx)

=
<g2

νi,Ak
>Iν

1+INR−1
R +

NRx,Rx
(τA)

<g2
νi,Rx

>Iν

+N ′
Ak,Ak

(τA)

Mν(Ak, Al, τA) = Cν(Ak,Rx)C∗ν (Al,Rx)
C∗ν (Rx,Rx)

=
<gνi,Ak

g∗νi,Al
e
j2πντi,kl>Iν

1+INR−1
R +

NRx,Rx
(τA)

<g2
νi,Rx

>Iν

+N ′
Ak,Al

(τA)

(11)

where INRR =
<gνi,Ak

g∗νi,Al
>Iν

<n2
νRx

>
, and the higher order uncorrelated noise components generated in

the above multiplications are represented by the N ′(τA) terms.

For the two reference signal case, where the two orthogonally polarised reference receiver outputs
are used as the two reference signals, equation 11 becomes

Mν(Ak, Ak, τA) = Cν(Ak,Rx)C∗ν (Ak,Ry)
C∗ν (Rx,Ry)

=
<g2

νi,Ak
>Iν

1+
<n∗νRx

nνRy
>

<g∗νi,Rx
gνi,Ry

>Iν
+

NRx,Ry
(τA)

<g∗νi,Rx
gνi,Ry

>Iν

+N ′
Ak,Ak

(τA)

Mν(Ak, Al, τA) = Cν(Ak,Rx)C∗ν (Al,Ry)
C∗ν (Rx,Ry)

=
<gνi,Ak

g∗νi,Al
e
j2πντi,kl>Iν

1+
<n∗νRx

nνRy
>

<g∗νi,Rx
gνi,Ry

>Iν
+

NRx,Ry
(τA)

<g∗νi,Rx
gνi,Ry

>Iν

+N ′
Ak,Al

(τA)

(12)

The denominators of equation 12 approach unity as the integration time approaches infinity and
the receiver independence improves. As these noise terms move closer to zero, and when the
interference-to-noise ratio is low, using two reference signals in either the voltage or power domain
gives a vast improvement in RFI reduction and noise injection compared with a single reference
signals, as long as the interference in the two reference signals is coherent.

3 Results

Most of the theoretical results from section 2 have been tested on data taken at the RPA while
pointing toward GLONASS, GPS, and IRIDIUM satellites. These tests and their results are de-
scribed in this section.

Unless otherwise stated, each observation and analysis underwent the following steps. A total of
2.23 seconds of dual polarised voltage data was recorded at a rate of 30 MSamples per second
with 8 bit sampling for each RPA antenna. This is equivalent to 255*256*1024 samples per
voltage stream. Each consecutive set of 1024 samples was transformed into the frequency domain,
resulting in 255*256 spectra containing 512 frequency channels, each ∼ 30 kHz wide. For each
of these frequency channels, 255 consecutive correlations were formed from 256 samples. At the
end of each correlation block , (∼ 8.74 ms), the new correlations were used to estimate the RFI
power in the primary antennas power spectra, and also to generate new weights for the next 8.74
ms of voltage-domain RFI cancellations. All raw and clean power spectra were averaged over the
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255 blocks to give the results shown. This indicates a major difference between the voltage and
power domain results. The voltage-domain subtractions used the previous block to estimate the
RFI voltages, while the power-domain subtractions used the current block to estimate the RFI
power. In the ATA there may be a built-in voltage delay, meaning that the weights from the
current block can be used on the voltages that generated them. This delay should be included in
future comparisons. It should also be noted that the voltage domain subtractions were applied in
the time domain, that is, using lag spectra and delayed voltages for the modeling.

3.1 GLObal NAvigation Satellite System (GLONASS) Satellite 779

In this section results from an observation of a GLONASS satellite are presented. The observation
consisted of recording 2.23 seconds of dual polarised voltage data, with 8 bit sampling at a rate
of 30 MSamples per second. Data was taken while pointing toward the satellite GLONASS 779
(COSMOS 2364). GLONASS 779 transmits a 1.0 MHz phase modulated coarse acquisition (C/A)
signal with a chip rate of 0.511 Mbits per second, and a 10.0 MHz phase modulated precise (P)
signal with a chip rate of 5.11 Mbits per second. The C/A signal power is ≈ 10 dB greater than
the P signal power, and is the obvious central peak in the following figures. Both signals are
centred at 1603.1250 MHz. The observation was run on June 21, 2001, at approximately 18:47
UT, and was centred at 1603 MHz. Antenna 1 was pointing toward the satellite with an azimuth
of 344◦ and an elevation of 68◦. For this experiment antennas 3 and 4 were used as the astronomy
antennas. Antenna 3 was given an azimuth offset of +4o while antenna 4 was given an azimuth
offset of +8◦. These offsets were made to ensure some variation in the interference-to-noise ratios
of the astronomy antennas. In all figures, dashed lines indicate bandpass estimates. A fifth order
polynomial fit of the dual reference power-domain cleaned spectra were generally used for these
estimates. In some cases this fit is obviously inaccurate, and the bandpass shapes are currently
being modeled.

Figure 1 shows the auto-correlation power spectra for each of the antennas. 8.74 ms integrations
were averaged together to give the power over the 2.23 second observation. In this figure the two
columns are equivalent, just shown on different scales. Antenna 3 has similar RFI power levels to
the reference (antenna 1), while the RFI power in antenna 4 is an order of magnitude weaker.
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Figure 1: Observed power in antennas 1, 3, and 4. Antenna 1 was pointing at GLONASS 779, while
antennas 3 and 4 were offset in azimuth by +4 and +8 degrees respectively. The power was estimated by
correlating the output of 256 1024-pt FFTs (8.74 ms) and averaging the results over 2.23 seconds. Red
and black lines distinguish the two receiver polarisations, with dashed lines indicating bandpass estimates.
The left and right columns are equivalent, apart from log and linear vertical scales.
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Figure 2 shows the results of different RFI mitigation techniques for the two astronomy antennas
(3 and 4). Each antenna is shown in a separate row, and each polarisation in a separate column.
The dual reference voltage-domain residuals (magenta lines) were only calculated for antenna 4.
This is due to the fact that using the two reference antenna polarisations gave extremely noisy
data, and needs more investigation, so the same polarisation of antenna 3 was used as the second
reference. All of the dual reference residuals have a lower power than the the single reference
residuals. This is mainly due to the additional INRR term in the denominator of equation 6 and
shown in more detail in figure 3.
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Figure 2: Residuals of various RFI mitigation techniques applied to the GLONASS 772 data. In each
of the four sub-plots, black lines indicate raw power, (see figure 1). The middle set of lines in each
sub-plot show the residuals of techniques which used a single polarisation of antenna 1 only. In the lower
set of lines, dashed black lines indicate bandpass estimates, while green lines represent power domain
cancellation using both polarisations from antenna 1 to estimate the RFI power. Magenta lines in the
bottom plots (antenna 4) represent dual reference voltage-domain cancellation, with single polarisations
from antennas 1 and 3 being used as the reference signals. See figure 3 for a zoomed view of antenna
4. Using two reference signals removes more of the RFI power, due mainly to the independence of the
reference antenna system noise terms, (see equation 12).
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Figure 3 shows a zoomed view of the GLONASS residuals of antenna 4. The peak at 9.3 MHz is
due to a second GLONASS transmission (see figure caption), while the peak at 10 MHz is a birdie
of the receiver system. The bandpass estimates (dashed black lines) have been estimated from a
fit of the dual reference power-domain spectra (green lines). While this is not the best fit, spectra
collected after this observation, when the satellite had moved away, confirmed that these are close
to the actual bandpasses. The error occurring around the C/A 1 MHz peak for the dual reference
voltage-domain spectra (magenta lines) is currently unaccounted for. This will be analysed in the
near future.

3 4 5 6 7 8 9 10 11 12
50

60

70

80

90

100
ABS, antenna 4, pol 1

3 4 5 6 7 8 9 10 11 12
50

60

70

80

90

100
ABS, antenna 4, pol 2

MHz

RAW              
CLN postcorr 1ref
CLN postcorr 2ref
CLN wiener 1ref  
CLN wiener 2ref  

Figure 3: Zoomed version of the RFI residuals in the power spectra of antenna 4 (bottom plots in figure
2). Shown are the results of four RFI mitigation techniques used to remove the GLONASS RFI. The peak
at ≈ 9.3 MHz is attributed to a second satellite. At the time of observation, GLONASS 787 (COSMOS
2375) which transmits approximately 1.7 MHz above GLONASS 779 at 1604.8125 MHz was above the
horizon. This places its central frequency at baseband at 9.31 MHz. This is consistent with the secondary
peak. Its position at the time was azimuth = 248◦ and elevation = 82◦. Note that using 2 reference
signals in the voltage domain does a good job for the P signal, but fails slightly for the strong C/A signal.
This has not been investigated.
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The fraction of RFI power remaining in the single reference residuals is largely due to the bandpass
of the reference signal, and is a function of the reference signal interference-to-noise ratio. If it
is assumed that the dual reference residuals contain a relatively small amount of RFI residual,
then the difference between the single and dual residual power gives an estimate of the RFI power
remain in the single reference residuals. This quantity is summarised in equation 9. Figure 4
shows the predicted result from equation 9 (black lines), together with the measured differences
made using the bandpass estimates shown in figure 1. The deviation of the dual reference voltage-
domain residuals and the dual reference power domain-residuals is also shown (magenta). These
results (which assume the only error to be the reference bandpasses) seem to indicate that this
correlated system noise is a major limitation to the single reference signal techniques (relative to
the dual reference techniques).
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Figure 4: Observed and estimated RFI residual power for each mitigation result apart from the dual refer-
ence power domain method. The dual reference power domain method, fitted with a 5th order polynomial,
was used as a bandpass estimate. The main reason for the RFI residual power in the single reference
residuals is the reference antenna bandpass. The theoretical difference due to the system noise is given
by equation 9

(
< (gνi,Ak

iν(t))2 > (1− 1
1+1/INRR

)
)
, and is indicated by black lines.
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Figure 5 shows the increased error when the single reference voltage-domain weights are calcu-
lated from a single FIR filter (from the first 1024-pt FFT for each sub-correlation block). This
is attributed to the zero mean noise terms in the weight estimates (N (τA) terms given in section
2.2) still being significant due to an insufficient number of samples in the estimate.
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Figure 5: Observed and estimated RFI residual power for each mitigation result apart from the dual
reference power domain method. The FIR filter weights used in the single reference voltage domain
method (blue lines) were calculated from the first 1024 samples in each 8.74 ms integration. This results
in noisy weights, leading to extra noise in the residuals.

Figure 6 shows the RMS in the C/A peak of each residual power spectra divided by the RMS in the
C/A peak of the raw power spectra, as a function of integration time. Points represent the ratio
measured at the end of each 8.74 ms integration. Curves following a t−1/2 trend indicate thermal
noise domination, where the noise in the residual power spectra is decreasing as

√
2τ∆ν. When

the structured RFI remnants start to dominate, the power ratio should converge to a constant
value. It is important that the signal is structured in the region that the RMS is estimated. The
mean power across the spectrum is subtracted out during the RMS estimate, so a flat signal will
not affect the RMS. The RMS values can not in general be used in INR estimates, but should be
an adequate estimate of INR reduction (if the signal is not flat).
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Figure 6: RMS in the residual power divided by the RMS in the raw power over the 1 MHz GLONASS
C/A peak. Smooth lines indicate the best fit for P = A + Bt−1/2, where P is the power and A and B are
constants. If the raw data RMS is dominated by a structured signal, and the residual RMS is dominated
by thermal noise then this ratio should decrease as t−1/2. When the residual RMS becomes dominated
by the structured signal the ratio should start to converge. It is shown that approximately 36 dB of RFI
power reduction has been achieved, and that the reduction has not reached it limit after 2.23 seconds,
except for the second polarisation of antennas 3.
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To investigate the stability of the voltage domain weights, one set of weights were calculated from
the first 8.74 ms correlation, and used for the entire 2.23 seconds. Figure 7 shows the effect on
the residual/raw power spectra RMS ratios (compare with figure 6). Note that the weights were
only held constant for the voltage domain weights. The power domain weights were adapted
as before. When the weights are no longer appropriate the interference power in the residuals
should start to increase, as it does in the figure. These results show that an update time of a
few hundred milliseconds is adequate for the GLONASS interference (although a detailed analysis
of this is currently underway). This is a lot longer than the chip rate of the C/A signal (0.511
MHz phase modulation ≈ 2 milliseconds). The reason for this is that if the transmitted signals
statistics change, but the band shape stays constant, the complex weights should stay the same.
The weight estimate is made on each sub-frequency channel separately, so as long as the ratio
of the RFI power in the reference signal to that in the primary signal stays constant, and the
geometric delay stays the same, so should the weights. If the transmission doesn’t move out of
any current frequency channels (or in to new ones), then the main effect on the weights will be due
to satellite motion. This causes a change in relative power in the primary and reference antennas
(due to motion through the antenna side lobes), and a change in the geometric delay of the RFI
signal.
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Figure 7: RMS in the residual power divided by the RMS in the raw power over the 1 MHz GLONASS
C/A peak. Smooth lines indicate the best fit for P = A + Bt−1/2, where P is the power and A and B are
constants. If the raw data RMS is dominated by a structured signal, and the residual RMS is dominated
by thermal noise then this ratio should decrease as t−1/2. When the residual RMS becomes dominated by
the structured signal the ratio should start to converge. If the structured signal in the residual starts to
grow, then so will this RMS ratio. The rise in the blue lines, representing the static weights, indicates
that after several hundred msecs the weights are no longer appropriate. This could be due to a change in
the transmitter relative to the antenna gain patterns, or the interferometer delay pattern, or it may be
due to other effects. This needs to be investigated more thoroughly.

Since the limit of the techniques were not reached after 2.23 seconds, another observation was
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carried out with nine 2.23 second acquisitions, taken approximately 2 minutes apart. New weights
were calculated at the beginning of each acquisition, so the change in satellite location should have
a minimal effect (the main due to changes in the received transmitter power, meaning changes in
the RMS ratios may be due to the raw power rather than just the residual power). Nevertheless,
the RFI power reduction is seen to still be effective after many seconds, and some of the deviation
from t−1/2 may be attributable to a secondary GLONASS satellite. Figure 8 shows the RMS
ratio over 20.07 seconds of integration for the RFI mitigation techniques. The observation is of
GLONASS 788, which transmits C/A and P signals centred at 1603.688 MHz. GLONASS 785
transmits at 1604.250 MHz and may be responsible for some of the deviation. All of the astronomy
antennas were pointing at an OH maser source (OH26.5), and the reference antenna (antenna 2)
was tracking the satellite. The satellite came closest to the OH maser at about 9 seconds into
the 20 seconds of data, and the variation in the RMS is likely to be related to this change in RFI
power in the astronomy antenna. More work needs to be done on the individual 2.23 seconds data
to find correlations in amplitude deviations.
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Figure 8: RMS in the residual power divided by the RMS in the raw power over the 1 MHz GLONASS
C/A peak. Smooth lines indicate the best fit for P = A + Bt−1/2, where P is the power and A and B are
constants. If the raw data RMS is dominated by a structured signal, and the residual RMS is dominated
by thermal noise then this ratio should decrease as t−1/2. When the residual RMS becomes dominated by
the structured signal the ratio should start to converge. It is shown that the reduction may have reached
it limit between 10 and 20 seconds, but further investigation is needed.

3.2 Global Positioning System (GPS) Satellites

In this section results from an observation of a GPS satellite are presented. The observation
consisted of recording 2.23 seconds of dual polarised voltage data, with 8 bit sampling at a rate of
30 MSamples per second. Data was taken while pointing toward the satellite GPS BIIA-17 (PRN
29). GPS BIIA-17 transmits a 2.046 MHz phase modulated coarse acquisition (C/A) signal with
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a chip rate of 1.023 Mbits per second, and a 20.46 MHz phase modulated precise (P) signal with
a chip rate of 10.23 Mbits per second. The C/A signal power is ≈ 10 dB greater than the P signal
power, and is the obvious central peak in the following figures. Both signals are centred at 1575.42
MHz. The observation was run on June 19, 2001, at approximately 17:44 UT, and was centred
at 1575.42 MHz. Antenna 1 was pointing toward the satellites direction with an azimuth of 42◦

and an elevation of 53◦. In these results antennas 3 and 4 were used as the astronomy antennas.
Antenna 3 was given an azimuth offset of +3◦ while antenna 4 was given an azimuth offset of +6◦.
These offsets were made to ensure that the INR in the primary astronomy antennas was not equal
for all receivers. Figure 9 shows the auto-correlation power spectra for each of the antennas. 8.74
ms integrations were averaged together to give the power over the 2.23 second observation. In
this figure the two columns are equivalent, just shown on different scales. Antenna 3 has similar
RFI power levels to antenna 1, but the RFI power in antenna 4 is an order of magnitude weaker.
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Figure 9: Observed power in antennas 1, 3, and 4. Antenna 1 was pointing at GPS BIIA-17, while
antennas 3 and 4 were offset in azimuth by +3 and +6 degrees respectively. The power was estimated by
correlating the output of 256 1024-pt FFTs (8.74 ms) and averaging the results over 2.23 seconds. Red
and black lines distinguish receiver polarisations, with dashed lines indicating bandpass estimates. The
left and right columns are equivalent, apart from log and linear vertical scales.

Figure 10 shows the results of different RFI mitigation techniques for the two astronomy antennas
(3 and 4). Each antenna is shown in a separate row, and each polarisation in a separate column.
The dual reference voltage-domain residuals (magenta lines) were only calculated for antenna 4.
They were calculated using a single polarisation of from antennas 1 and 3 as references. All of the
dual reference residuals have a lower power than the the single reference residuals. This is mainly
due to the additional INRR term in the denominator of equation 6 and shown in more detail in
figure 11.
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Figure 10: Residuals of various RFI mitigation techniques applied to the GPS BIIA-17 data. In each
of the four sub-plots, black lines indicate raw power, (see figure 9). The middle set of lines in each
sub-plot show the residuals of techniques which used a single polarisation of antenna 1 only. In the lower
set of lines, dashed black lines indicate bandpass estimates, while green lines represent power-domain
cancellation using both polarisations from antenna 1 to estimate the RFI power. Magenta lines in the
bottom plots (antenna 4) represent dual reference voltage-domain cancellation, with single polarisations
from antennas 1 and 3 being used as the reference signals. See figure 11 for a zoomed view of antenna
4. Using two reference signals removes more of the RFI power, due mainly to the independence of the
reference antenna system noise terms, (see equation 12).
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Figure 11 shows a zoomed view of the GPS residuals of antenna 4. The peak at 10 MHz is a
birdie of the receiver system. Some of the reamining power in all of the residuals may be due to
additional satellites, however this is harder to test since all GPS satellites transmit at the same
frequency. Lag and Doppler information should provide some indication of how much power is
expected from all other satellites above the horizon. This is left to future work.
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Figure 11: Zoomed view of the GPS residuals of antenna 4 (see figure 10). The peak at 10 MHz is a
birdie of the receiver system. It is not clear at the moment how much of the residual power is due to
other satellites which were in transit at the time of observation. Lag and Doppler information will help
in this investigation.
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Figure 12 shows the RMS in the C/A peak for each residual power spectra divided by the RMS
in the C/A peak for the raw power spectra as a function of integration time. These results are
similar to those of GLONASS (figure 6) which has a similar orbital period.
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Figure 12: RMS in the residual power divided by the RMS in the raw power over the 2 MHz GPS C/A
peak at the centre of the band. Smooth lines indicate the best fit for P = A + Bt−1/2, where P is the
power and A and B are constants. If the raw data RMS is dominated by a structured signal, and the
residual RMS is dominated by thermal noise then this ratio should decrease as t−1/2. When the residual
RMS becomes dominated by the structured signal the ratio should start to converge. It is shown that a
little less than 30 dB of RFI power reduction has been achieved, and that the reduction has not reached
it limit after 2.23 seconds.

3.3 Iridium Telecommunication Low Earth Orbit (LEO) Satellites

In this section results from an observation of an IRIDIUM satellite are presented. The observation
consisted of recording 2.23 seconds of dual polarised voltage data, with 8 bit sampling at a rate of
30 MSamples per second. Data was taken while pointing toward the satellite Iridium 64. Iridium
64 has a downlink between 1616.00 - 1626.50 MHz. Iridium transmits voice and data at up to
4.8 kbits per second. Iridium uses both time and frequency multiple access methods, with up
to 240 separate frequency channels. This means that the power is quickly moving around the
band, which can seriously effect the optimal complex weights used in the RFI modeling. Iridium
also orbit approximately seven times faster than GLONASS and GPS, meaning that many of the
stationarity limitations will be occurring on a much faster time scale. This high orbital velocity
also means that decorrelation of baseline power spectra due to fringe-rotation is a serious concern.
While the investigation of low Earth orbit satellite RFI mitigation is only just beginning, the above
analyses were applied to the IRIDIUM data for comparison. In this report each sub-correlation
block is made up of 64 consecutive 1024pt-FFTs, and only the first 256 blocks have been used
for the final power spectra. This is approximately 0.56 seconds of data. The observation was
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run on June 19, 2001, and was centred at 1621 MHz. All antennas were pointing toward the
satellite with an azimuth of 58◦ and an elevation of 38◦. Figure 13 shows the power spectra in
antennas 1, 2, and 3. In all of the following plots, only the peak at 8.7 MHz will be shown, since
the peaks are very narrow. The peak at 10 MHz is a system birdie, not an IRIDIUM transmission.

2 4 6 8 10 12
100

101

102
antenna 1, log scale

2 4 6 8 10 12
0

10

20

30

40

50
antenna 1, linear scale

2 4 6 8 10 12
100

101

102
antenna 2, log scale

2 4 6 8 10 12
0

10

20

30

40

50
antenna 2, linear scale

2 4 6 8 10 12
100

101

102
antenna 3, log scale

MHz
2 4 6 8 10 12

0

10

20

30

40

50
antenna 3, linear scale

MHz

Figure 13: Observed power in antennas 1, 2, and 3. All antennas were pointing towards IRIDIUM 64.
The power was estimated by correlating the output of 64 1024-pt FFTs (2.18 ms) and averaging the results
over 0.56 seconds. Red and black lines distinguish receiver polarisations. The left and right columns are
equivalent, apart from log and linear vertical scales.

Figure 14 shows the mitigation results for antennas 2 and 3, concentrating on the peak at 8.7
MHz. The voltage-domain technique does considerably worse here compared to the power-domain
techniques. The most likely cause is that the weights were determined from the previous sub-
correlation block, and things are changing much faster here. As mentioned above the ATA is
likely to have a built-in delay to ensure that the weighting coefficients are determined by the
voltage samples that they are applied to. This delay needs to be included into these algorithms.

Figure 15 shows a zoomed view of the residuals. The performance of the power domain
cancellation techniques are very similar. The main reason for this is the large INR of the reference,
as shown in figure 13 (note that the INR of interest is that of the 8.7 MHz peak only). Again,
test should be carried out to see if the large residuals associated with voltage domain cancellation
are due to using old weights.

Figure 16 shows the ratio of the RMS in the residual to raw power across the 8.7 MHz peak.
Note that in this figure the x axis has a linear scale. The steps that occur every few hundred
milliseconds are due to variations in the amplitude of the 8.7 MHz peak power. Antenna 3, which
has a large INR reaches an RFI reduction of about 20 dB.
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Figure 14: Mitigation results for antennas 2 and 3, concentrating on the peak at 8.7 MHz. The voltage-
domain technique performs poorly compared with the power-domain techniques. The most likely cause is
that the weights were determined from the previous sub-correlation block, and things are changing much
faster.

3.4 Effect on Astronomical Signals

To investigate the effect on an astronomy signal, a synthetic 0.5 MHz wide signal was introduced
into the voltage streams of the astronomy antennas with zero delay at 6 MHz. Figures 17 and 18
show the power spectra and residual power spectra from this experiment. Although a quantitative
analysis is yet to be carried out, the results indicate that the algorithms have had little affect of
the signal. Since the exact characteristics of this signal can be calculated, it will form the basis
for a quantitative analysis.
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Figure 15: Mitigation results for antennas 2 and 3, concentrating on the peak at 8.7 MHz. The voltage-
domain technique performs poorly compared with the power-domain techniques. The most likely cause is
that the weights were determined from the previous sub-correlation block, and things are changing much
faster.
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Figure 16: RMS in the residual power divided by the RMS in the raw power over the 8.7 MHz peak.
Most of the variation is due to variation in the raw amplitude of the peak.
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Figure 17: Power spectra for antennas 1, 3, and 4 containing GLONASS 772 transmission. Antennas
3 and 4 have an additional synthetic 0.5 MHz signal centred at 6 MHz present. The 100% polarised
synthetic signal was injected into the voltage streams of antennas 3 and 4 prior to processing.
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Figure 18: Residual power for antennas 3, and 4 containing GLONASS 772 transmission plus a synthetic
0.5 MHz signal centred at 6 MHz. The 100% polarised synthetic signal was injected into the voltage
streams of antennas 3 and 4 prior to processing.
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4 Summary

It has been shown quantitatively that if the optimal complex weights, given by the Wiener so-
lution, for modeling RFI in a voltage stream using a reference voltage are stationary, then the
cancellation can be made after correlation in the power domain. Cancellation in either the voltage
or power domains lead to similar results. The main limitation of both methods is that the system
noise of the reference voltage leads to an attenuation of the interference estimate. Using two ref-
erence signals with uncorrelated noise greatly improves the result, especially in the case of a low
reference signal interference-to-noise ratio. At least 36 dB of RFI power reduction was achieved,
this number limited mainly by the amount of available data.

For GLONASS and GPS interference, it has been shown that the complex weights are stable for
several hundred ms (for a 10 m baseline). It is believed that this is limited mainly by the motion
of the satellites, which orbit at approximately twice the sidereal rate, rather than changes in the
satellite transmission. IRIDIUM satellites which orbit about seven times faster and have very
complicated spectra are much harder to analyse, however almost 20 dB of RFI reduction was
achieved. Much more work is needed in pin pointing the exact processes that are causing changes
in the complex weights, and to what level each process is affecting the mitigation quality.

Little has been said about the effect of the techniques on astronomical signals. This is an extremely
important parameter in any RFI mitigation algorithm and should be included in any detailed
experiment. Data containing GLONASS signals together with OH maser emission have been
taken with the RPA, and synthetic signals have also been included into the primary antenna
voltage signals. While the techniques seem to leave the astronomy signals alone in the most part,
the subtle effects may be extremely important and need to be known with extreme accuracy.

5 Appendices

5.1 Pre-Correlation in Time Domain (FIR Filter with Wiener Solu-
tion)

All of the voltage-domain results shown in this report were processed in the time domain rather
than the frequency-domain. This involves using the reference-primary signal cross-correlation lag
spectrum and the reference signal auto-correlation lag spectrum to create the optimal weights for
the interference model. In the above analysis, the lag spectra were calculated by inverse Fourier
transforming the power spectra.

Create a 2P-1 tap FIR filter. The idea is to find a set of 2P-1 weights w which minimise the power
in rAk

(t) = vAk
(t) −mAk

(t), where mAk
(t) is a model of the RFI voltage in vAk

(t), based on the
reference voltage,

mAk
(t) =

P−1∑
k=1−P

wAk,k(t)vRx(t− k).

Similarly to the frequency domain version, the weights are given by

wAk
(t) = C−1

Rx,Rx
CAk,Rx

where the bold faced CRx,Rx indicates a (2P-1)*(2P-1) matrix formed from the lag spectra of the
reference signal. This can be written out as the individual lags
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wAk
(t) =


CRx,Rx(0) CRx,Rx(1) · · · CRx,Rx(2P − 2)
CRx,Rx(1) CRx,Rx(0) · · · CRx,Rx(2P − 3)

...
...

. . .
...

CRx,Rx(2P − 2) CRx,Rx(2P − 3) · · · CRx,Rx(0)


−1



CAk,Rx(1− P )
...

CAk,Rx(1)
CAk,Rx(0)
CAk,Rx(1)

...
CAk,Rx(P − 1)


The model is then found by summing together 2P-1 laged versions of the reference signal, weighted
by the wAk

terms

mAk
(t) =



vRx(P − 1) · · · vRx(0) · · · vRx(1− P )
vRx(P ) · · · vRx(1) · · · vRx(2− P )

vRx(P + 1) · · · vRx(2) · · · vRx(3− P )
... · · · ... · · · ...

vRx(N + P − 2) · · · vRx(N − 1) · · · vRx(N − P )





wAk,1−P
...

wAk,−1

wAk,0

wAk,1
...

wAk,P−1


This was the method used to generates the voltage-domain results. The notation differs from most
reports, since here the negative time lags have been included. See [2] for a detailed description of
the technique.
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