
ATA Memo No. 40

Processing Architectures For Complex Gain Tracking
Larry R. D’Addario

2001 October 25

1. Introduction

In the baseline design of the IF Processor [1], each beam is provided with separate and independent
phase tracking for each antenna. The phase is adjusted for every data sample at a programmable rate, and
the rate may be updated at least 1000 times per second by a local microprocessor. This is accomplished by a
DDS-style phase generator driving sine and cosine lookup tables to generate a complex gain value, which is
then multiplied by the current complex data sample. In this design, the magnitude of the complex gain can
be varied by re-loading the lookup table so that all entries are scaled by the desired magnitude. Provisions
are made for doing this from the local microprocessor, but it requires that the magnitude be updated far
more slowly than the phase. The arrangement is more than sufficient for accurate tracking of a target source,
even if the source is a low earth orbit satellite and even in the case of an expanded (3 km) array. The gain
magnitudes can be different among the antennas, thereby allowing some beam shaping, but it was expected
that they can remain fixed for a given observation.

It has recently been suggested [2] that more general tracking capability is desirable, where the full
complex gain (phase and magnitude) can be varied rapidly. It would then be possible, using known
algorithms, to generate an array beam with its peak tracking a target source and simultaneously with a
null tracking an interfering source. It may also be possible to accomplish this under the constraint that only
the phases are varied (provided that the number of antennas is large), but feasible and robust algorithms
for this are not presently known.

In this memo, I examine alternative designs that would provide for rapid phase and magnitude tracking
of the complex gains.

2. Update Rates

As reported in [3], the maximum phase rate for sidereal sources in the planned ATA (0.7 km extent)
is 0.951 Hz, and for a satellite in a 350 km circular orbit it is 287 Hz. For a 3 km array, these become
4.075 and 1233 Hz, respectively. Using the largest of these values, and attempting to keep the complex gain
always within 1% of its ideal value, we find that the phase must be updated every 1.29 microseconds (775
kHz rate). This is far longer than the sample period, ∼10 nsec (100 MHz). However, in the baseline design
each successive sample is from a different subband, so that the phase must be updated for every sample.

If we are not simply tracking one target, but also are tracking (in nulls of the beam) one or more
interferers, the necessary update rate may be different. To estimate this rate, consider that one way to
create a null is first to compute the gains for a uniformly-weighted beam toward the target and for another
beam toward the null. Let the gain of the first beam in the direction of the second be gx; if the complex
gains for the second beam are all weighted by gx and subtracted by those for the first beam, the resulting
complex gains will produce a beam with the desired peak and null (although it may not be the optimum such
beam). This method can be extended to produce a beam with several nulls. The final complex gain for each
antenna is thus a linear combination of the complex gains that would be needed for each of the constituent
beams. The time derivative of each gain, and thus its required update rate for a given accuracy, is the same
linear combination of those for the constituents; if the constituent beam for the fastest moving source has
high weight, then it will tend to dominate the derivative. Normally we expect that the target’s beam has
the largest weight; but usually it is a sidereal source, moving slowly. Nevertheless, for a worst-case estimate,
let us take a 350 km satellite as the fastest object and assume that its beam has the largest weight. We then
find that the required update rate for 1% accuracy is nearly the same as for tracking such an object as the
target, namely about 775 kHz for an expanded array or 180 kHz for the initial array.

The 1% accuracy critereon is somewhat arbitrary. It corresponds to a net relative accuracy in the phased
array voltage gain of .01/

√
N for N antennas, providing that no additional loss of precision occurs in the

1

subsequent signal processing. This is also the residual gain in the direction of an intended null, relative to
the target’s gain; for N = 350, it is 5.35× 10−4 (voltage) or –64.4 dB.

3. Design for Time-Domain Architecture

First consider a design which, unlike the baseline, treats each channel as a single band rather than
analyzing it into subbands. This alternative includes separate (but somewhat coarse) delay tracking for each
beam.

With a single band it is not necessary to update the complex gain every sample, so the gain tracking
logic can operate at a much slower clock rate. A reasonable configuration for the logic of a complex gain
function generator is shown in Figure 1. Here there are separate DDS-like linear interpolators for the phase
and magnitude. At each update, the phase is presented to sine and cosine lookup tables to convert to
(real,imaginary) format; and these results are multiplied by the separately-generated magnitude. The final
result is

g(t) = [1 + α(t)][sin φ(t) + j cosφ(t)]

where φ(t) is the phase and α(t) is the variable part of the magnitude. This form simplifies the multipliers
if α(t) � 1, as further explained in the next section.

The change in phase ∆φ and change in magnitude ∆α at each update must be loaded into the appropriate
registers periodically; details of this are not shown in the figure. Even though the required update rate of
775 kHz is far below the data sampling rate, it is fast enough that the mechanism of Figure 1 cannot readily
be implemented in a microprocessor. We assume that it is done in hardware. But we assume that updating
of ∆φ and ∆α is slow enough (a few kHz or less) that those values can be computed and loaded by a
microprocessor.

An alternative arrangement with real and imaginary interpolators would avoid the lookup tables and
multipliers, which would be a significant saving. But it would likely require that the reloading of the
parameters be much more frequent, requiring that more of their computaton be implemented in hardware
rather than in a microprocessor. This is because the trajectory of the gain in the complex plane is very
nearly a circle. Overall, it is believed that the configuration in Figure 1 will be simpler.

It should be possible to implement the gain generator in logic that can be clocked at more than 100 MHz,
which is 129 times the required update rate. Much of the logic can then be shared among the 8 generators
required for the 4 dual-polarization beams of one antenna channel. In addition, less pipelining and more
combinatorial logic can be used, reducing the gate count. One method of sharing the logic among channels
is shown in Figure 2. There are 8 sets of the parameter registers φ, ∆φ, α, ∆α and 8 output registers, one for
each beam and polarization; the gain generator is clocked at 8 times the single-beam update rate, cycling
through the sets of registers. This results in the updating of the beams’ complex gains being staggered in
time, which must be taken into account by higher-level processors that compute and load the parameters.
Timing in the gain generator must be synchronized at the system level so that the actual update time for
each beam is known; this is the purpose of the SYNC signal shown in Figure 2. It is convenient if the
SLOW CLOCK that drives the gain generator is a sub-multiple of the data sample clock; if the latter is 100
MHz, then the ratio can be 16 and the gain generator can run at 6.25 MHz. (A more detailed design may
include other timing considerations that may lead to a higher internal speed for the gain generator logic.)

4. Numerical Considerations

In this section, I consider the word sizes and computational accuracies needed within the tracking
generator in order to maintain 1% accuracy in the complex gains. The word lengths shown in Figure 1 are
the results of these considerations.

In the phase generator, 10b are required in the phase representation in order to achieve this accuracy.
The lookup tables must then produce at least 7b numbers for the sine and cosine; 8b is actually more
convenient, allowing some margin. Only one table representing one quadrant of sine is actually needed, so
the table’s size is 256 words of 8b each. The 10b phase is used to calculate two 8-bit addresses (one for
sine and one for cosine) in this table and to set the sign of the result. The φ and ∆φ registers need to be
larger in order to avoid roundoff errors during the extrapolation. Assuming that at least 500 gain updates
are desired per re-loading of these registers from higher level processors, another 9 bits are needed within
the extrapolator to avoid roundoff, so that the registers should be at least 19b long; 20b registers are more
convenient.

2

Similarly, the magnitude generator needs to produce results with at least 7 significant bits. The format
depends on the range of magnitudes that needs to be represented. For the purpose of creating nulls as
discussed in the Introduction, it seems safe to assume that variations in gain will not exceed a few percent of
the nominal value. In that case, letting the gain be g = g0 + α, it is efficient to let the interpolator generate
only α, whose length need be only a few bits. The situation is especially simple if we can assume that g0 ≡ 1.
Again an additional 9 bits are needed in the registers to avoid roundoff errors, leading to 12b registers for α
and ∆α.

The two multipliers can then be implemented as 4b × 8b, with the results rounded to 8b, followed by
an 8b adder. The full representations of all numbers are shown in Figure 1, using the notation n.m; this
indicates a fixed-point number of length n bits with its LSB m bits to the right of the binary point. Note
that, with signed operands, multiplying an n.m number by an a.b number gives a (n + a− 1).(m + b) result
if no precision is lost.

5. Design for Frequency-Domain Architecture

In the baseline design [1], a frequency-domain architecture was proposed in which coarse delay tracking
is followed by analysis into 16 subbands, in common for all beams. Then each beam is separately tracked in
complex gain, with a phase slope across the subbands. The data is processed in blocks of 16 samples, one
from each subband.

Attempting to extend this so that the gain tracking includes both magnitude and phase leads to an
arrangement like Figure 3. This is similar to the time-domain architecture of Figure 2, but there are some
important differences. The gain generator now computes the complex gain for each of the 16 subbands of
one beam and stores them in a length-16 memory before going on to the next beam. The memory is then
read at the full data clock speed (FAST CLOCK in Figure 3) and applied to the data samples from the 16
subbands for one block; the same data is then re-read for the next block, continuing until it is next updated
by the gain generator.

The gain generator needs to be slightly more complicated so as to implement the phase slope. This is
done by making the phase generator portion as a two-stage DDS, and supplying an additional parameter τ
by which the phase is incremented at each update. A block diagram for this is given in [1]. An additional
register is provided for each beam’s bank to hold τ , so the size of the register file (and the re-loading rate
for the upstream computers) is increased only slightly over the time domain architecture.

While a scheme like this might be feasible, there are some difficulties with it. First, the gain generator is
now time shared among 128 results but the required update rate for any one result is no smaller. Achieving
an update rate of 775 kHz then requires that SLOW CLOCK run at 99.2 MHz, which is about the same
as FAST CLOCK. Whereas the 775 kHz rate applies to an expanded array (3 km), it can be reduced by
a factor of 4 for the initial array (0.7 km). At least this factor of 4 is needed to make the implementation
feasible. Further reduction can be achieved by relaxing the 1% accuracy critereon. Second, the 8 separate
dual-port memories may be difficult and/or expensive to implement in the Xilinx FPGAs that we intend to
use. These memories must operate at the full data rate, and sometimes an update (write) will occur at the
same time and for the same address as a read. Each one is only 256 bits, which is too small for efficient
implementation with the FPGA’s block RAMs. A much more detailed design is needed to determine the
feasibility of this architecture.

In fact, this arrangement may not be adequate for some purposes. It does not provide independent gain
tracking by subband, but rather just a phase slope (fine delay) across the subbands of any one beam. If we
desire to create a beam with one or more nulls far from the delay-tracking center, it is known [2] that the
nulls will have narrow bandwidth. But if there are several narrow band interferers at different frequencies
within the channel such that they fall in different subbands, then each might be placed in a null provided
that the subbands can be tracked separately. To support this, an extension of the design of Figure 3 would
require 128 separate register banks rather than 8, with a total of 512 parameters to be re-loaded by the host
processor; the re-load rate is estimated at (1 kHz)×78b×128 = 9.98 Mb/s for each of 4 IF channels of each
antenna.

3

REFERENCES

[1] L. D’Addario, “ATA IF Processor: Description of the preliminary baseline design,” 2001-Aug-02.
http://astron.berkeley.edu/∼ldaddari/ata/baselineDesignAll.pdf

[2] G. Bower, presentation at ATA Engineering Meeting, August 2001.
[3] L. D’Addario, “ATA IF Processor: Requirements,” rev 2.1, 2001-Jul-14, Appendix A.

http://astron.berkeley.edu/∼ldaddari/ata/ifpRequirements.pdf

4

ADDER

REGI STER

REGI STER

Q

Q

D

phi

Del t a
phi

Lookup Tabl e

ADR1

ADR2

SI N

COS

D

al pha

Del t a
al pha

ADDER

REGI STER

REGI STER

Q

Q

ADD

ADD

ROUND

ROUND

19. 19

19. 19

19. 19

10. 10

12. 15

12. 15

12. 15

4. 7

8. 7

8. 7

11. 14

11. 14

CLK

CLK

8. 7

8. 7

Par amet er Regi st er s:
Re- l oaded per i odi cal l y
by Moni t or / Command

Fi gur e 1: Compl ex Gai n Gener at or

Compl ex
Gai n
Out

GAI N GEN

256 x 8b

Not at i on: x. y i ndi cat es a f i xed poi nt number
wi t h x bi t s physi cal l y r epr esent ed and wi t h
t he LSB l ocat ed y bi t s t o t he r i ght of t he
bi nar y poi nt .

Real

Imag

Update_clock

CMULT CMULT. . .
Beam 1, pol 1 Beam 4, pol 2

REGI STER REGI STER

Real

I mag
REGI STER BANK 1

REGI STER BANK 2

REGI STER BANK 3

REGI STER BANK 4

REGI STER BANK 5

REGI STER BANK 6

REGI STER BANK 7

REGI STER BANK 8

64 b

GAI N GEN

Al l r egi st er banks ar e
r e- l oaded per i odi cal l y
by Moni t or / Command.

Count er modul o 8

Decode

Fi gur e 2: Ti me- shar i ng a compl ex gai n
gener at or among f our dual - pol ar i zat i on beams.

phi , dphi ,
al pha, dal pha

ENABLE1 ENABLE8

ENABLE1
ENABLE2
ENABLE3
ENABLE4
ENABLE5
ENABLE6
ENABLE7
ENABLE8

ENABLE7

ENABLE2

ENABLE4

ENABLE8

ENABLE1

ENABLE5

ENABLE6

ENABLE3

Re in 1

Im in 1

Re in 8

Im in 8

SLOW_CLOCK

SYNC

Re out 1

Im out 1

Re out 8

Im out 8

CMULT

I mag

CMULT . . .

Fi gur e 3: Desi gn f or f r equency- domai n ar chi t ect ur e.

Beam 4, pol 2

REGI STER BANK 8

Real

REGI STER BANK 7

DUAL- PORT
MEMORY
16b x 16

Beam 1, pol 1

Count er modul o 128

phi , dphi , t au,
al pha, dal pha

Al l r egi st er banks ar e
r e- l oaded per i odi cal l y
by Moni t or / Command.

REGI STER BANK 5

REGI STER BANK 3

Decode

REGI STER BANK 2

REGI STER BANK 6

REGI STER BANK 4

REGI STER BANK 1

GAI N GEN
wi t h
f i ne del ay
t r acki ng

78 b

3

DUAL- PORT
MEMORY
16b x 16

4

Count er modul o 16 4

(t au: 14. 14)

ENABLE3
ENABLE4

ENABLE7

ENABLE8

ENABLE2

ENABLE6

ENABLE1

ENABLE5

ENABLE8

WR_ADDR[0..3]

ENABLE1 WR_ADDR[0..3]
WR_ADDR[0..3]

RD_ADDR[0..3] RD_ADDR[0..3]

RD_ADDR[0..3]

ENABLE1

ENABLE7

ENABLE8

ENABLE3

ENABLE2

ENABLE6

ENABLE4

ENABLE5

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

Re in Re in

SYNC

Im in Im out 8Im in

Re out 8

SLOW_CLOCK

Re out 1

Im out 1

FAST_CLOCK

