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Abstract

This study investigates wide field polarization calibration using the Allen Telescope
Array (ATA) for the purpose of correcting errors in the imaged Stokes I, Q, U, V pa-
rameters that are due to primary beam effects. It is shown that the overall direction
dependent polarimetric response of the interferometer can be determined from visibility
data of pointings in the vicinity of the well known stable linearly polarized calibrator 3C
286. The polarimetric response is encapsulated by seven independent components of a
Mueller matrix that relate to leakage and gain errors. In the case of the ATA these com-
ponents can be modeled effectively using quadratics over the part of the primary beam
that extends to half the distance to the half power point. If the model, which is fixed in
primary beam coordinates, is applied to the ATA data knowing the parallactic angles and
offset positions, then an improvement is noted in RMS errors of the imaged Stokes Q and
U values from around 0.9 % down to 0.2 % with respect to the true Stokes I over the part
of the field considered.

1 Introduction

Traditionally, calibration is only performed at the pointing center with the consequence that
the correctness in polarization of resulting images degrades further across the field. Normal-
ization by the primary beam power pattern post imaging may adequately correct the intensity
roll-off in total intensity imaging under some conditions. However such simple normalization
does not correct position angle errors. In fact, direction dependent effects in the context of
polarization have largely been overlooked until recently.

When the full co and cross polarization antenna primary beam patterns are accurately
known, equivalent convolution kernels can be derived and applied in the visibility domain
during gridding to account for direction dependent effects [Bhatnagar: 2008]. Under this
condition, some success in extracting pointing errors from observations has been reported.
However, little work has yet been done to infer a primary beam model itself from astronomical
observations. This memo reports on a wide field polarization calibration study which explores
this area using the ATA.

Since Miriad is entirely integrated into the ATA, all development is done on top of Miriad
tools. A previous study [Law: 2010] investigates the way by which calibration leakage solutions
change due to wide field and wide bandwidth effects. It was found that calibration solutions
with effective polarization leakages of up to 50% are computed when calibrating for off-center
pointings as far away as half the distance to the half power point of the primary beam.

The Miriad calibration algorithm assumes small leakages and sometimes fails to determine
solutions in such cases. This problem is circumvented by a two stage calibration approach
where on-center calibration is first done using a known calibrator in the center of the field in
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Figure 1: Pointings in the cross 17 dataset.

the usual way. The direction dependent effects are then explored using off-center pointings of
the same calibrator subject to the original calibration.

Results show that the polarimetric response of the ATA can be modeled using a simple
quadratic over a part of the field of view that extends to half the distance to the half power
point. Errors in the imaged Stokes I,Q,U,V are illustrated in the Results section for the case
when no direction dependent corrections are made, and also for the case when corrections are
made using the inferred model.

The end goal of this study is to devise a practical calibration strategy for the ATA that
effectively deals with wide field and wide bandwidth effects. Although this memo shows that
a simple quadratic model for the polarimetric response can be determined and is effective, the
stability of solutions over time must still be investigated, and the region of the primary beam
under consideration must be extended.

2 Dataset and initial processing

The dataset consists of 17 pointings that are evenly spaced in a cross pattern spanning 1080
arcsec in right ascension and declination, as illustrated in Figure 1. The center pointing, pO,



is directed towards the calibrator 3C 286, while the furthest off-center pointing is located at
half the distance to the half power point at 3.14GHz. Each of the 17 pointings were scanned
8 times in turn for 50 seconds in each instance. A full 90 degrees range of parallactic angle
coverage is attained over a total observing time of 6% hours, starting at 04h30 on 16 May 2010.
Correlations are integrated over 10 seconds. A 100MHz band of 1024 channels is observed,
centered at 3.14GHz.

Processing commences with automatic flagging, retaining visibilities from only 28 antennas
(1, 3,4, 7,8, 11, 12, 13, 15, 17, 19, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39,
40, 41) which each has a 6.1m diameter dish on an alt-az mount. Ten percent of the 100MHz
band from both ends of the spectral window are discarded and the remainder is split into 8
segments (about 10MHz per segment) to facilitate a frequency dependent study [Law: 2010].
Calibration is done using Miriad’s mfcal and gpcal tasks, separately for each frequency segment,
using only the scans of pointing pO which is directly towards the calibrator. This calibration
determines the bandpass, time varying gain, and leakage solutions per polarization of each
antenna. These calibration solutions for pointing p0 are then copied to the off-center pointings,
each to its respective frequency segment. The calibration performed up till this point does not
include any direction dependent effects, and corrects only for pointing p0.

Thereafter snapshot Stokes 1,Q,U,V images are created for each 50 second scan of the
observation for all 17 pointings. The Stokes I,Q,U,V values at the source location are extracted
from the snapshot images by fitting a point source model using the Mirad task ¢mfit. This
collection of measured Stokes I,Q,U,V values per pointing per visit is illustrated in Figure 2
where the calibration solution for pointing p0 is applied to all the off-center pointings.

In the figure, the large changes in Stokes I are due to the expected Gaussian sensitivity
pattern of the primary beam. Glitches in Stokes I (of unknown cause) are clearly seen in two
scans at pointings 5 and 6, and are not removed from the data. More interestingly, errors in
Stokes Q and U are noted that seem to change systematically for the off-center pointings. These
Stokes Q, U errors seem to be related to Stokes I and have a parallactic angle dependence.

In order to explore the direction dependencies, it is useful to display the scan results on
a plane that is stationary with respect to the primary beam, where the effect of parallactic
angle rotation has been removed. The right ascension (RA), declination (DEC) coordinates
corresponding to the scans can all be mapped to a relative azimuth elevation plane. To
calculate the relative azimuth (AZ,¢;) elevation (EL;;) for a particular off-center scan, the
azimuth and elevation coordinates of that scan are subtracted from the azimuth and elevation
coordinates of a hypothetical on-center scan (p0) occurring at the same local sidereal time
(LST):

HA,, = LST, — RA,
sin(EL, ;) = sin(DEC,) sin(LAT') + cos(DEC}) cos(LAT) cos(H A ;)

tan(AZ,,) = —sin(HA, ;) cos(DEC,)
pit) = sin(DEC,) cos(LAT) — cos(DEC,) sin(LAT) cos(H A, +)
tan(xp,) = sin(HA, ;) cos(LAT)

sin(LAT) cos(DEC)) — sin(DEC),) cos(LAT) cos(H A, +)
ELTel,p,t = ELp,t - ELO,t
AZyerpr = AZp, — AZy, (1)

The time-pointings fill out the plane as illustrated in Figure 3. The same coverage map
can be produced by simply rotating the relative right ascension declination pointings around
pointing 0 by the average parallactic angle of each scan.



10.0 T T T T T T T

Pointing

Figure 2: Observed Stokes I,Q,U,V (extracted from snapshot images) are shown for numbered
pointings where calibration determined for pointing p0 is applied to all other pointings. Dif-
ferent coloured lines, corresponding to the colours used in Figure 3, are used to distinguish the
different times that the same pointings are visited during the observation. Glitches in Stokes
I are visible for p5t4 (blue), p6t3 (green) and p7t0 (black). Components of I are notably
superimposed onto Q and U as a function of parallactic angle.
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Figure 3: Coverage of the scans relative to the central pointing p0 over the relative azimuth

elevation plane for different parallactic angles. The labels are

rotated to the parallactic angle

of each scan. This plane is stationary with respect to the primary beam. The data points

extend out half way to the half power point at 3.14 GHz.

3 Theory

Calibration errors in a radio interferometer will create errors in measured Stokes parameters, S.
Sault et al. [Sault: 1996] use the matrix equation formalism to derive how relative gain errors
and leakage propagate into Stokes errors. To first order, this can be expressed as § = Ms

where s = [IQUV]" is the true Stokes parameters and

epp +2 —Cpp sin(2x) + enp cos(2x)
Mo = 1 —Cpp sin(2x) + enp cos(2x) €pp +2 Cnp
X T 2| Cppeos(2x) + enp sin(2x) —Cnp epp + 2
—Cnnj (Qpn cos(2x) + enn Si“(QX)) J (Cpn sin(2x) — €nn COS<2X>) J

Cpp cos(2x) + €np sin(2x)

—CnnJ
—Cpn c08(2X) — €nn sin(2x)g
—Cpn sin(2x) + €nn cos(2x)
€pp +2
(2)

J
J



where y is the parallactic angle. e refers to gain error terms and ( refers to leakage terms such
that

€pp = €x1 t €y1 + €50 + €

€pn = €21 — €yl — 6;2 + 622

€np = €x1 — €y1 + €22 — 622

Gnp = Da1 — Dy + D3y — Dzz

Cpn =Dg1 + Dyl - D;2 - DZQ

Can = Do1 — Dyr — Dy + Dy

Cpp = D1+ Dy1 + Do + Do (3)
Here, for example, the leakage from the y polarization into the x polarization for antenna 1 is

represented by D1, and the gain, g1, of the z polarization of antenna 1 with respect to the

nominal gain is gz1 = g - (1 + €z1), following the conventions in [Sault: 1991].
For a single scan of a known source one can regroup the equations and write instead

1
Z€pp +1

I Q cos(2x) + U sin(2x) 0 U cos(2x) — Q sin(2x) 0 0 -V Eznp

_ Q I cos(2x) U —TIsin(2x) —V sin(2x) —V cos(2x) 0 3>"P

U I'sin(2x) -Q I cos(2x) V cos(2x) —V sin(2x) 0 qCPP
1% 0 0 0

L—
<t SO~

Qsin(2x) — Ucos(2x) Qcos(2x) + Usin(2x) -1 ;:GCZ:
35 ¢nn
(4
This equation suggests that the observed Stokes I,Q,U,V, combined with the known Stokes
1,Q,U,V and parallactic angle can be used to solve for the mean leakage, ¢, and gain errors, €,
by matrix inversion. Note that there are seven € and ( parameters to solve for but only four
Stokes parameters and the parallactic angle are known. Uniquely solving for the (, € values
requires us to either model them or use values from multiple scans.
Observed Stokes 1,Q,U,V data, the parallactic angle, and the true Stokes 1,Q,U,V values
of the source is indeed available over the relative azimuth elevation plane illustrated in Figure
3. If data is combined within a neighbourhood, it is possible to solve for the seven €, (
parameters within such a neighbourhood, at any point in the plane. Such a neighbourhood
can easily be implemented in the matrix formulation by including all the data over the plane,
whilst weighing the equations due to the i-th scan based on the distance from the point of
interest (AZ,e;, ELy¢;) to the location of the i-th scan in the relative azimuth elevation plane,
using a Gaussian footprint:

1 AZre i_AZre 2 ELT'C i_ELre 2
w;(AZnet, ELner) = exp _5( L, 1)* + (ELre, D)

()

Implementing such a neighbourhood directly does unfortunately convolve the solution by
the neighbourhood footprint. To overcome this issue, instead of solving for ¢ and ¢ values
directly, one can solve for a model that describes the € and ( surfaces within such a neigh-
bourhood. By examining solutions solved within a neighbourhood without imposing a model
(not shown), it appears that a quadratic would be a suitable parameterization for € ¢ maps
over the part of the primary beam being investigated. (p, and €, are however modeled using
a constant over the neighbourhood instead. This is done because the data seem to constrain
Cpn and €, only weakly, and using a quadratic here results in overfitting.

Once the parameterized e, { maps are determined, ¢,  values can be calculated at any point
in the field and be used to predict true Stokes 1,Q,U,V values from observed Stokes 1,Q,U,V
values using s = M 15 which also requires knowledge of the parallactic angle. Processing in
this way would necessitate imaging in snapshot mode, unless the polarimetric model is used
in an A-projection algorithm [Rau: 2009] although this option is presently not available in
Miriad.
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Figure 4: €, ( maps constrained in a neighbourhood to a quadratic model for a range of
neighbourhood sizes. Because values are only evaluated at the datapoints and are otherwise
linearly interpolated for display, the images (especially €,,) appear more jaggered than they
should be. The distance to the half power point (hpp) is 2160 arcseconds. Dashed contours
indicate negative values. Model name: qqqqccq. The characters ¢ (quadratic) and ¢ (constant)
in the model name refer to the models used for the respective seven €, ( components.
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Figure 5: Remaining error over the field. The figure shows the difference between the predicted
and true Stokes values for off-center observations of the calibrator source 3C 286. The distance
to the half power point (hpp) is 2160 arcseconds. Dashed contours indicate negative values.
Model name: qqqqgceq



4 Results

Figure 4 shows results for solutions to the €, ¢ maps using quadratic models for €,y,, €,p, Cap, Cpp
and (,p, and constants for €,, and (,,. Separate solutions are found within a neighbourhood
for each point in the relative azimuth elevation plane. Therefore, only when the Gaussian
weighted neighbourhood encompasses the entire plane with equal weighting to equations from
all scans (this happens when o=10 times the distance to the half power point, which is 21600
arcseconds) are the solutions constrained to be quadratic functions or constants across the
field. For smaller values of o, piecewise quadratic (or constant) solutions are calculated.

If the model-predicted Stokes I,Q,U,V is subtracted from the true Stokes I,Q,U,V for the
observations of calibrator 3C 286, the remaining error over the field is shown in Figure 5.
Figure 6 shows this result in a form comparable to Figure 2. RMS errors of down to 1.35% in
I, 0.21% in Q, 0.24% in U and 0.25% in V (for one minute observations of 3C 286) is achieved
compared to the true Stokes I for off-center pointings across the primary beam up to half the
distance to the half power point. Note that the RMS error in Stokes I dramatically reduces to
0.75% if the three glitches seen clearly in Figure 6 are removed.

For reference, the RMS errors of the on-axis scans (of pointing p0, directly towards the
calibrator source) alone, are 0.67% in I, 0.14% in Q, 0.18% in U and 0.22% in V when traditional
calibration at the phase center is performed. These errors are representative of the dynamic
range and thermal noise limit, and prevail because the duration of each scan is merely a minute.
For a science target observation, better results are expected when time synthesis is employed.

Figure 7 shows results where €,p, Cup, Cpps Cnns €nn and (p, are modeled using constants
(while €,, is modeled by a quadratic) which is equivalent to the case of not correcting for
direction dependent effects other than normalizing by the primary beam power pattern. In
this case the RMS errors are 1.37% in I, 0.96% in Q, 0.88% in U and 0.36% in V compared to
the true Stokes I value.

The abovementioned results are listed more comprehensively as absolute errors in Table
1, and repeated as errors relative to the true Stokes I in Table 2. In these tables the model
name is composed of characters ¢ (for quadratic) and ¢ (for constant) which signify the type
of model used for the respective maps €,p, €np, Cap, Cpps €nns Cpn and (p,. The models are
solved within a neighbourhood of size specified by ¢ in units of the fraction of the distance to
the half power point. Table 3 provides the fitted coefficient values that describe the €, ( maps
over the relative azimuth elevation plane for the model qqqqccq, o=10.

5 Conclusion

We present a technique that uses observed Stokes I,Q,U,V errors to derive direction dependent
leakage and gain errors for a radio interferometer. It is shown that a simple quadratic model for
direction dependent gain error and leakages can be inferred from pointings nearby to a known
calibrator source. The results show that such a model can be used to predict corrections to
imaged Stokes [,Q,U,V values as a function of parallactic angle. This is demonstrated with
observations of 3C 286 using the ATA at 3.14GHz.

The method shows improvements in RMS errors for Stokes 1,Q,U,V across the field, which
in this study was up to half the distance to the half power point. Without direction dependent
corrections, the RMS errors are 1.37% in I, 0.96% in Q, 0.88% in U and 0.36% in V compared
to the true Stokes I. When the simple quadratic model is employed, the RMS errors become
1.35% in I, 0.21% in Q, 0.24% in U and 0.25% in V across the field, which for Q, U and V are
similar to typical on-axis image quality. Poor results for Stokes I are due to glitches that are
not removed from the data. Better results are possible if piecewise quadratic models are used.



Model InaxE| | @maxE| | UmaxiE| | VmaxE| | Irvse | @rvsE | Urmse | Veuse
qqqqceq, o = 0.5 0.74 0.035 0.065 0.053 0.10 0.012 0.017 0.017
qqaqeeq, o =1 | 0.84 | 0.049 | 0.072 | 0.074 | 012 | 0.017 | 0.022 | 0.022
qqqqgceq, o = 10 0.87 0.068 0.075 0.075 0.13 0.020 0.024 0.025
qccceee, o = 10 0.87 0.258 0.254 0.122 0.13 0.093 0.086 0.035
none 2.01 0.289 0.331 0.103 0.91 0.093 0.111 0.032
none, on-axis 0.14 0.033 0.032 0.050 0.07 0.014 0.017 0.022

Table 1: Absolute errors in Stokes I,Q,U,V measured across the field. For reference, values in
the last row are derived from on-axis scans (of pointing p0) only.

Model InaxE| | @maxE| | UmaxiE| | VmaxjE| | Irvse | @rMsE | Urmvise | Veuse
qqaqceq, o = 0.5 | 7.6% | 0.36% | 0.67% | 0.55% | 1.04% | 0.12% | 0.18% | 0.17%
qqqqgcceq, o =1 8.7% 0.50% 0.74% | 0.77% | 1.26% | 0.17% | 0.23% | 0.22%
qaqqqeeq, o =10 | 8.9% | 0.70% | 0.77% | 0.77% | 1.35% | 0.21% | 0.24% | 0.25%
qccceee, o = 10 8.9% 2.65% 2.61% 1.25% | 1.37% | 0.96% | 0.88% | 0.36%
none 20.7% | 2.97% 3.41% 1.06% | 9.39% | 0.96% | 1.15% | 0.33%
none, on-axis 1.42% | 0.34% 0.33% 0.52% | 0.67% | 0.14% | 0.18% | 0.22%

Table 2: Errors in Stokes 1,Q,U,V measured across the field, expressed as a percentage of the
true Stokes I. For reference, values in the last row are derived from on-axis scans only.

a2

as

aq

as

Map ao al
%epp +1 | -5.92965136e-01 6.02962732e-02
5€np 2.15877513e-02 2.49413754e-02
iCnp -2.72813204e-02 | -7.42125016e-03
iCpp -1.71157605e-02 | -1.83882334e-02

j5€nn 0 0

J?Cpn 0 0
iz¢nn 5.62279585e-03 | -1.85949822e-03

-9.21986156e-03
-5.94928838e-02

1.53955964e-03

-1.21946981e-01

0
0

-7.80202503e-04

6.62856253e-02
-6.62384725e-03
-2.44480828e-02
-5.06502783e-03
0
0
-8.81762897e-03

-5.89025251e-01
-1.48096116e-02
2.06533842e-02
1.29041887e-02
0
0
8.58295590e-03

9.94065099e-01

-7.00064176e-04
-9.10807742e-03
2.72060584e-04

-3.42902092e-03
6.65407653e-03
-2.54849430e-04

Table 3: Fitted coefficient values that describe the €, ( maps over the relative azimuth elevation
plane for model qqqqceq, 0=10. Here the respective €, ¢ maps(AZ,c;, ELye;) = aoAZfel +
01AZe) + 02AZ o ELpe; + a3E Ly + a4ELE€l + a5 where the units for AZ,.¢;, EL,¢ is the
fraction of the distance to the half power point.

6 Recommendations

A further observation is needed to test the inferred model on data with polarization properties
different to that of the calibrator. Such a new dataset could also be used to test for stability
over time of the direction dependent maps, and form the basis of a study for a more refined
observation and calibration strategy. We also still need to investigate how applicable the
quadratic model is up to the half power point of the primary beam.
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Figure 6: Predicted Stokes I,Q,U,V values for the various scans using models for €,,, €,p, Cnps
Cpp and (np that are quadratic and models for €,,, (5, that are constant over the primary
beam. Compare to Figure 2. The glitches in Stokes I remain, and seem to be due to suspicious
data. RMS errors of 1.35% in I, 0.21% in Q, 0.24% in U and 0.25% in V are calculated as a
percentage of the true Stokes I for 3C 286. Model name: qqqqccq, o=10.

11



10.0 T T T T T T T

Pointing

Figure 7: Predicted Stokes I,Q,U,V values for the various scans using a model for €,, that is
quadratic and models for €,p, €nn, Cpp, Cnps Cpn and (,y, that are constants over the primary
beam. RMS errors of 1.37% in I, 0.96% in Q, 0.88% in U and 0.36% in V are calculated as a
percentage of the true Stokes I for 3C 286. Model name: qccceee, o=10.
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