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abstract 

An excellent paper on the subject of interference 
mitigation by Amir Leshem and Alle-Jan Van Der Veen1 
proposed a technique to identify and extract the “spatial 
signature” of interference from observations in radio 
astronomy. The technique involves the short term 
measurement of the covariance matrix and the determination 
of its eigenvectors. I propose a method that is closely 
related to the method they describe but that can operate as 
an eigenfilter2 on the data samples as they emerge from an 
interferometer. Using the ATA correlator architecture, the 
system would require only two multiply accumulate stages 
per antenna and some arithmetic to find the roots of a 
quadratic equation.  

 
Imaging: Let  and  represent the complex samples 
emerging from antennas i and j at a single instant in time. 
Then any baseline may be calculated by 

iv jv

 
*
jiij vvb =          (1) 

 
If a column vector is formed out of all of the above 
antenna samples then a matrix of baselines can be formed 
from its conjugate square or outer product with itself. 
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The baseline matrix B, is Hermitian so that only (N+1)N/2 
of the numbers are unique. The real parts of bij are 
symmetric about the diagonal and the imaginary parts are 
asymmetric. The order of the indices is important since 
∠bij=-∠bji.  
 

Assume that D represents the discrete Fourier 
transform of the sample vector ν resulting in the voltage 
image sample s. In matrix notation the discrete Fourier 
transform may be represented as: 
 

[ ] [ ][ )0()0( vDs = ]                          (4) 
 

Each of the samples sj(0) represents a complex sample of a 
beam coming from some direction in the sky. The image, 
however, consists of a measurement of the power in each 
beam. The power in each beam may be determined by 
multiplying each sample in the vector  by its complex 
conjugate. This calculation is the same as the diagonal of 
the outer product of  with itself.   

)0(s

)0(s
 

[ ] [ ][ ][ ]Hssdiagss )0()0()0()0( * =                   (5) 
 

Substituting for  from (4): )0(s
 

[ ] [ ][ ][ ] [ ][ ]HH DvvDdiagss )0()0()0()0( * =              (6) 
 
But the outer product of  with itself is the baseline 
matrix

)0(v
: 
[ ] [ ][ ][ ][ ]HDBDdiagss )0()0()0( * =                      (7) 
 

Where H represents the conjugate transpose of the vector or 
matrix and * represents its complex conjugate. The sum of 
two such image samples produces the following result. 
 

[ ] [ ] [ ][ ][ ][ ] [ ][ ][ ][ ]HH DBDdiagDBDdiagssss )1()0()1()1()0()0( ** +=+   (8) 
 
[ ] [ ] [ ][ ][ ][ ]HDBBDdiagssss )1()0()1()1()0()0( ** +=+     (9) 

 
 In a normal observation, a series of baseline 
calculations (B matrix) are taken and the results are 
averaged resulting in the covariance matrix R. 
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Where m represents the number of time samples. The image is 
the diagonal of the transformed covariance matrix.  
 
 The complex vector v that generates a baseline array 
sample B is an eigenvector of B. 
 

[ ][ ] [ ][ ] [ ] [ ]pvvvvvB H ==        (12) 
 

Where p is the eigenvalue of B. Note that p is the scalar 
product of v with itself and represents the total power 
ntering the array. e
 

The product of any vector with a baseline array sample 
matrix will yield its eigenvector or zero. Assume that 
baseline sample matrix  is formed from the outer product 

of  with itself. The inner product of  with any vector 

not orthogonal to it will yield a complex number . 

0B

0v 0v

xa
 
 [ ] [ ][ ] [ ] [ ][ ]xx

H
x vBvvvva 0000 ==       (13) 

 
The sum of two baseline sample matrices has, at most, 

two non-zero eigenvalues. 
 

Assume the sum has eigenvector v . From equation (13) above  e

 
 [ ] [ ] [ ] [ ][ ][ ]eee vBBvbvb 101100 +=+        (14) 
 

ev∴  must be the weighted sum of  and .  0v 1v
 

Let        (15) [ ] [ ] [ ]1100 vavav eee +=
 
 [ ] [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ][ ]1100101111001111000000 vavaBBvaavaavaavaa eeeeee ++=+++  (16) 
 
Let  be the eigenvalue of v  k e

 
 ( )[ ] ( )[ ] [ ] [ ]( )110011111000011000 vavakvaaaavaaaa eeeeee +=+++    (17) 
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   0110000 aaaaka eee += 1111001 aaaaka eee +=     (18) 
 
 ( ) 011000 aaaka ee =−   ( ) 100111 aaaka ee =−     (19) 
 

 
00

011
0 ak

aaa e
e −
=    

11

100
1 ak

aaa e
e −
=      (20) 

 

 ( )( )1100

10011
akak

aa
−−

=        (21) *
1001 aa =

 
       (22) ( ) 100111000011

2 aaaaaakk =++−
 
       (23) ( ) 0100111000011

2 =−++− aaaaaakk
 

( )
2

4 1001
2

00110011 aaaaaa
k

+−±+
=       (24) 

 
Where  is the eigenvalue. k
 
Note that 1001aa  is the norm of the covariance between the 

two sample sets v  and v . If the two sample sets are 
independent and due to noise then this value will be equal 
to zero and the two eigenvalues will be equal to  and . 
If, on the other hand, the two sample sets are completely 
correlated then k , where 

0

=

1

00a 11a

a2 1100 aaa ==  and the other 
eigenvalue will be zero. It is apparent that any point 
source or image with coherence across its extent will 
develop a strong vector root.  
 
Knowing the eigenvalues, it is now possible to determine 
the corresponding eigenvectors. From (15) 
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From (20) 
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Since an eigenvector times a scaler is still an 
eigenvector, 
 

 [ ] [ ] [ ]1
11

10
0 v

ak
avvt −

+=         (27) 

tv  can now be turned into a vector root. 
          (28) [ ] [ ]eH

e vvk =
 

 [ ] [ ]
[ ] [ ]tH
t

t
e vv

vkv =          (29) 

 
 
An interference identification algorithm: An algorithm 
suggests itself for collecting baseline data for images 
with coherence across their extent without computing all of 
the baselines. It is only necessary to collect the vector 
square root or eigenvector of the baseline matrix that 
corresponds to the UV data that exhibits the most coherence 
from one measurement to the next. This method is very 
similar to the method proposed by Amir Leshem et al1 for 
identifying interference sources. This method does not 
require the use of the covariance matrix and the 
identification of its N eigenvectors where N equals the 
number of antennas. 

 
After the first two samples of array data are gathered 

calculate all of the inner products of the two sample 
vectors: , a , and . Using these numbers determine the 
biggest eigenvalue  and its corresponding eigenvector as 
in 24 and 27. After scaling the eigenvector as in 29 so 
that its inner product square is equal to its eigenvalue, 
save it as the vector square root of the baseline matrix 
corresponding to the interference. Save this interference 
vector and use it with the next sample vector to repeat the 
process.  

00a 11 01a
k

 
The algorithm, as it has been presented, has a 

threshold problem. In a low interference to noise 
environment the norm of the cross covariance between the 
two sample vectors becomes very small making it difficult 
to determine which of the vector roots to keep. When the 
wrong choice is made the image of the interference 
deteriorates. The threshold becomes lower for bigger arrays 
since the cross covariance measurement is then based on 
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more samples. Current simulations suggest a threshold of 
about .01 for an array of 100 elements. 
 
 If the astronomical source is a point source then 
there is a danger of confusion between the astronomical 
source and the interference. An extended source in radio 
astronomy does not exhibit coherence across its extent. It 
behaves like many independent noise sources. Each 
independent source produces its own signature on the array. 
In this situation the interference may be more easily 
identified.  

 
An interference excision algorithm: In order to extract 
interference a variation on the above algorithm may be 
used. This algorithm is very similar to the “Spatial 
Filtering” proposed by Amir Leshem et al1. Using the norm of 
the cross correlation to establish a threshold, measure the 
signature of the interfering source. Repeat the above 
algorithm to determine the largest eigenvalue and 
corresponding vector root. Find, as well, the smaller 
eigenvalue and vector root and pass its vector root onto a 
standard correlator. The smaller vector root represents 
signal that is orthogonal to the interference. 
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figure 1 

 
 This figure represents a point spread function of a 
point source at channel 75 of a 1000 point discrete Fourier 
transform of a sparse set of 100 randomly distributed 
points. 
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figure 2 

 
 This figure is the signal of figure 1 added to noise. 
50 frames were averaged together. The signal to noise ratio 
was .01. 
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figure 3 

 
 Each of the 50 frames of the signal of figure 2 was 
treated with the first algorithm. The coherent signal was 
successfully removed from the noise background. The signal 
to noise ratio was .01. 
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figure 4 

 
 This figure shows the successful removal of an 
interfering coherent signal from noise which could 
represent an extended astronomical source. The second 
algorithm was applied to each of the 50 frames of figure 2. 
The orthogonal eigenroot was passed onto a standard 
correlator to produce the above result. 
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figure 5 

 
 Random frequencies about the coherent signal of figure 
2 were added to represent the effect of an extended source 
with an interference signal in the middle. As in the other 
figures, 50 frames were processed. 
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figure 6 

 
 This figure shows the successful isolation of the 
interfering signal. 
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figure 7 

 
 The interference removal algorithm passed the extended 
source and the background noise on to the standard 
correlator while eliminating the interference. 
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figure 8 

 
 This figure represents the results of an experiment to 
show that the algorithms distinguish between sources that 
are coherent across their extent and those that are not. 
Two point sources are shown which are coherent with each 
other against a background of noise. 50 frames have been 
processed. 
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figure 9 

 
 The first algorithm successfully isolates the two 
sources of figure 8. 
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figure 10 

 
 The second algorithm removes the coherent signal and 
passes the noise onto a standard correlator for analysis. 
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