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Abstract

The lack of large scale structure in correlator array maps is the re-
sult of the hole in the center of the visibility plane that arises because
the smallest spacing between antennas is limited to one antenna diam-
eter. Such a map has no total flux, for example. For extended surveys
which use multiple pointings of the array antennas, the largest struc-
tures are totally missing. However, visibility data may be obtained for
the region in the center of the hole in the visibility plane by adding a
single antenna total power map. This can be accomplished by Fourier
transforming the map and dividing out the transform of the gain func-
tion to produce the central visibilities. If a mosaic of pointings is ob-
tained with the array in its interferometric mode, this data set allows
extrapolation of the visibilities inward from the edge of the hole. This
can be done by a procedure similar to that for the single dish in which
the gain function is divided from the observed visibilities to obtain
visibilities within the edge of the hole. From the overlap, a complete
map may be constructed. Pointing errors spoil this procedure. The
effect of the pointing errors is to produce phase and amplitude errors
in the visibilities that increase toward the overlap region from both
the origin and the edge of the hole. This is doubly bad, because the
transforms of the gain functions also tend toward zero in the overlap
region and dividing out the gain increases the data errors. For the ho-
mogeneous array, in which the single antenna total power contribution
is from one or more of the array antennas in total power mode, the

1



effects of even small errors in pointing are significant. A study of the
propagation of these errors shows that if pointing errors in both the
total power observations and in the array observations do not exceed
about 1/30 of an antenna beam, map accuracies of about 10% in all
angular scales can be achieved.

For the total power observations, rapid comparison to a reference
position on the sky will be important to insure that the measure-
ment uncertainties are dominated by the system noise rather than by
drifting system gain. For spectral line studies, it should suffice to in-
tersperse five minute observations of a mosaic of pointings with five
minute observations toward a reference sky direction. This would be
done with the combined interferometric and autocorrelation observing.
For continuum observing a different strategy is required because of the
small system noise fluctuations relative to the system gain drifts on,
say, the above five minute integrations. The mosaiced interfrometer
maps must be augmented by observations made during rapid slewing
of the antennas with short integration source sample times and a long
reference source integration time during the slew turnaround. These
observations would be done separately from the interferometric ob-
servation with all antennas observing together to provide a sensitive
continuum map in a short time.

1 Introduction

Imaging of fields larger than the primary beam of the 6m ATA antenna will
be important for much of the science that is planned. This means that a
map will be made up from a mosaic of pointings of the array across the large
field. For Nyquist sampling, the grid of pointings should be spaced by no
more than one half primary beam width. Because the shortest array spacings
are limited by the antenna diameter, visibility data obtained from the array
is missing in the central part of the uv plane for all pointings. This is not
a problem for studies of distributions of sources of diameters much smaller
than the primary beam. However, regions with extended structures larger
than the primary beam width will not have the large structures detected by
the array. It requires the addition of map data from a single dish or from an
array of smaller dishes. The latter option is not possible since such an array
of smaller dishes is not available. The single dish fills in the central data
best when its diameter is much larger than that of any of the array dishes.
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That option is also not readily available. Larger antennas do exist, of course,
but they typically don’t have either the frequency agility of the ATA or the
available time.

The autocorrelations at each 6m antenna as well as the crosscorrelations
are recorded, and maps made with these autocorrelations can be used for the
large scale structures. However, very good calibration and pointing accuracy
are required for this procedure to work well.

2 Effect of Pointing Errors on Mosaic Images

with a Homogeneous Array

One or more of the elements, operating in single antenna mode, can be used
to add data into central the hole. The latter data are observed in the image
plane, whereas the array data arrive in the visibility plane. The two planes
are linearly related by the Fourier Transform. Let TB(x, y) be the brightness
of the sky. (x, y) are the angular coordinates in the image plane, and g(x, y)
is the antenna gain function. For a single pointing of the interferometer, the
sky brightness is weighted by the antenna gain function, and we observe the
visibility with the array

V (u, v) =
∫ ∞

−∞
g(x, y)TB(x, y)e

−i2π(ux+vy)dxdy (1)

Suppose that TA(x, y) is a map of the source made with one of the an-
tenna elements. Since TA(x, y) is a convolution of TB(x, y) with the antenna
gain function, TA(x, y) = TB(x, y) * g(x, y), it can be Fourier transformed
to tA(u, v) = G(u, v)V(u, v) in the (u, v) plane. To extract V(u, v), it is
necessary to form effectively the fraction

V (u, v) = tA(u, v)/G(u, v) (2)

which works except where G → 0. Since g(x, y) is typically close to a
Gaussian function, G(u, v) is as well. Let Θ be the FWHM of the antenna
with a circular beam and θ2 = x2 + y2.

g(θ) ∝ e−2.76(θ/Θ)
2

(3)
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Then G(u, v) has a similar form in terms of the radial visibility variable.

β =
√

(u2 + v2)

G(β) ∝ e−3.58Θ
2β2

(4)

The connection between Θ and D, the antenna diameter, is the usual diffrac-
tion formula.

Θ = 1.2λ/D (5)

Figure 1 shows the cross-section of the visibility plane near the origin. For

single pointing of the array antennas, visibility is obtained only for β ≥ D/λ.
A plot of equation(3) in Figure 1 shows that G(β)→ 0 before β reaches D/λ.
Thus, visibility data cannot be extracted from the single antenna observations
all the way out to β ∼ D/λ.

When we do a mosaic of pointings with the array to obtain an extended
map, we get additional information about the large scales from the fact
that we are observing each beam sized patch of the map with a sequence
of different gain functions. Equation (1) now becomes a group of equations.

V (u, v;xo, yo) =
∫ ∞

−∞
g(x− xo, y − yo)TB(x, y)e

−i2π(ux+vy)dxdy (6)

where (xo, yo) are the different pointing centers. This has the useful result

that more information is obtained about the central visibility. (Ekers, and
Rots, 1979; Cornwell, 1988). A transform of this data set made with respect
to the mosaic of pointings (xo, yo) leads to the following formal result for the
measured visibility.

FT [V (u, v;xo, yo)] = G∗(uo, vo)V (u+ uo, v + vo), (7)

where uo and vo are the variables in the transform from the mosaic pointings,
xo, yo. The result is that there are measured visibility data off the ordinary
u,v tracks at distances given by uo, vo, weighted by G

∗(uo, vo). Recovering
visibilities from equation (7) requires the same kind of division that is implied
by equation (2). Depending on the width of G(u, v), this data will overlap
that which comes from the single dish measurements. For the homogeneous
array, it is the same G(u, v) for both contributions, and this distribution is
shown as another plot of equation (3) centered at the smallest value of β
given by the array, D/λ, in Figure 1. The overlap is now significant and
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shows why the combination of single dish plus mosaic array data for the
homogeneous array should give an image that is fully sampled and accurate
at the short spacings. Simulations show that it works for perfect data. We
have assumed here that the array antenna distribution has short spacings
that provide visibility measurements close to the edge of the hole.

The presence of pointing errors spoils the image formation contributions
of both the single antenna maps and the array visibility observations. It is
useful to consider them separately.

2.1 The Visibility Errors from the Single Antenna

From the single antenna map, visibility data is extracted corresponding to
values of u and v from 0 to ≤ D/λ. In this data, the larger values of u
and v correspond to greater separations of pairs of patches on the antenna.
Figure 2 illustrates how phase errors in these visibilities arise if there are
pointing errors. Figure 2 also suggests a way to evaluate the effects of the
pointing errors. Begin with the explicit connection between TA(x, y) and its
transform.

TA(x, y) =
∫ ∞

−∞
V (u, v)G(u, v)ei2π(ux+vy)dudv (8)

With pointing errors δx and δy,

TA(x+ δx, y + δy) =
∫ ∞

−∞
V (u, v)[G(u, v)ei2π(uδx+vδy)]ei2π(ux+vy)dudv (9)

The effective transfer function is now

Geff (u, v) = G(u, v)ei2π(uδx+vδy) ∼ G(β)ei2πβδθ (10)

Geff (u,v) contains phase errors which will distort the Visibility V(u,v) de-
rived from equation (1). The phase errors are greater for larger u and v for a
given pointing error. The use of a radial cut in the uv plane with the radial

variable β =
√

(u2 + v2) simplifies the discussion.

Consider two limiting cases. In the first, the errors change slowly, perhaps
during a snap-shot observation, but are randomly distributed among the
antennas with RMS expectation σθ. If the pointing error in the phase term
of equation(9) is replaced by its expectation and β is set equal to sD/λ,
where 0 ≤ s ≤ 1, so that s is the radial variable of the hole normalized to
one, then the typical phase error is

∆φ = 2πβσθ = 2π(sD/λ)σθ = 2.4πs(σθ/Θ) (11)
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It is at the half radius, s=1/2, where the visibility data from the single
dish measurements must overlap with those obtained from the array. For
(σθ/Θ)=0.1, one tenth beamwidth pointing accuracy, ∆Φ = .38(22o) at this
point. For (σθ/Θ)=.05, it is 0.19(11

o). These are large errors from small
pointing errors. Perley (1989) notes that a 10o phase error is equivalent to a
visibility amplitude error of 20% in the construction of images.

In the other limiting case, the pointing errors vary rapidly at each an-
tenna during the observations, perhaps due to the wind. In this case, the
phase errors approximately average out to zero. However, there is a loss in
amplitude due to the decorrelation caused by the fluctuating phase. If the
fluctuations are normally distributed,

Expectation[eiφ] = e−σ
2

φ
/2 (12)

From the discussion above, with σθ now corresponding to rapid fluctuations,

σ2φ = (2.4πsσθ/Θ)
2 (13)

and the loss of amplitude is by the following factor.

e−1/2(2.4πsσθ/Θ)
2

(14)

At the mid radial point, s=1/2, this factor is 0.93 for σθ/Θ=0.1. The func-
tional form of this error factor is a Gaussian just like the basic function G(β)
in equation (4). Including this factor in equation(4) leads to a narrower and
uncertain composite Gaussian. Altogether, the effective overlap region is
reduced as well as the visibility data being made uncertain.

2.2 Visibility Errors from Scanning the Array Anten-
nas(Mosaicing)

Equation (7) above is the result of a transform of the visibility data from
the array with respect to the mosaic of pointings, xo, yo. The effect of the
multiple pointings is to provide interferometer visibilities with the set of gain
functions g(x− xo, y − yo). That is, we get a different interferometric image
from each pointing. The effect of pointing errors on these observations can
be found starting with the inverse transform of g(x− xo, y − yo).

g(x− xo, y − yo) =
∫ ∞

−∞
G(u, v)ei2π[u(x−xo)+v(y−yo)]dudv (15)
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With pointing errors δx and δy in xo and y0 respectively,

g(x− xo− δx, y− yo− δy) =
∫ ∞

−∞
[G(u, v)e−i2π(uδx+vδy)]ei2π[u(x−xo)+(y−yo)]dudv

(16)
Just as in equation(9) above, the pointing errors in the array give rise to
an erroneous effective Geff (u, v) which is G(u, v) with the additional factor
e−i2π(uδx+vδy). All the relations worked out above apply in this case as well.
Both the phase errors and amplitude errors increase with distance uo and vo
away from the regular uv track. In particular, the data extrapolation inward
from the edge of the hole is more uncertain the farther it is carried.

It is clear how the image fidelity and dynamic range are degraded by the
pointing errors for the homogeneous array. Where the two data sets overlap
at the half diameter radius of the hole, they spoil the inter-comparison, so
that the good mutual calibration of the data sets is degraded. In addition,
because the weighting by the gain transfer function at the half radius point
is only ≤ .25 of what it is elsewhere, the errors are multiplied up in the
inversion process. In principle, single dish maps with about three single
antennas should provide adequate signal/noise for the combination of data to
have adequate signal/noise. This is because the short spacing visibility data
has the largest intensity. In the case of the ATA-42 there are just three short
spacing pairs. However, in view of the uncertainties in the observations, it
would be wise to obtain single dish maps from at least a dozen or so antennas
and combine them. This will somewhat reduce the uncertainties in the final
maps. In fact, it would probably be best to use all of the antennas in single
dish mode to get the best results.

If we combine the effects of pointing errors in both the single antenna
total power observations and the interferometric observations, we find that
in order to have brightness errors in the final composite maps that
are no worse than 10% we must have pointing errors no worse than
about 1/30 of a beamwidth for both modes of observing.
Tests done at the VLA at cm wavelengths (Cornwell, T. 1988, A&A,

202, 316.) indicate that combining array data with total power data from
the array antennas does work, and at mm wavelengths in the CO(1-0) line,
Marc Pound made a good map of the Eagle Nebula combining a Mosaic
interferometer map made with the BIMA array and a single antenna map
made with the Bell Labs 7m antenna (Pound, 1998, ApJ, 493L, 113).
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3 Total Power Observing

Apart from the tight pointing requirements for the large scale mapping, the
other big problem is obtaining the total power map without a rapid compar-
ison system. Classical single antenna observing is done with a rapid com-
parison switch (a Dicke switch) at the input. Whereas the interferometer
observing should have no offsets, a total power measurement is made on top
of the system temperature, and gain drifts in time produce varying offsets.
For the ATA antenna, there is no input switch at the receiver input for sim-
plicity, and there is no obvious way to introduce a chopping mirror in the
optics. That leaves the need to follow a total power measurement with one
toward a reference direction in a time short compared with the time interval
of significant gain drifts.

For a radiometer with system temperature Tsys, RF bandwidth B, and
integration time τ , the fractional output RMS fluctuations referred to the
input are the familiar ∆T

Tsys
= 2√

Bτ
. If the input is perfectly balanced with a

rapid switch to a reference load, one should achieve that sensitivity. The
switching time must be short compared with the time for significant gain
variations to occur. If there is no switch, then the gain variation may dom-
inate. If the gain were G and it varied by an amount ∆G, then the output
fluctuations referred to the input would have ∆T

Tsys
=∆G

G
. Gain variations grow

with time, whereas the basic measurement fluctuations decrease with time.
A short comparison time must be used. The basic parameters are evidently
receiver bandwidth and integration time τ and the gain variation during the
measurement time τ .

We made gain fluctuation measurements on one of the ATA antenna
systems, that of antenna 3H, which we assume is typical. For the first set
of measurements, we placed a large piece of absorber in front of the feed
that terminated it pretty well for most frequencies. Then we measured the
output power fluctuations at the antialiasing filtered analog output of one
channel in the RFCB. We tuned the channel, of width 200 MHz, successively
to bands from one to ten GHz. Bands at frequencies above five GHz usually
have little interference. Then we took output records from an HP power
meter integrated over one second intervals and recorded them. Figure 3
shows results for short times, up to 10 minutes, for all the bands. Some
incidences of interference are evident in the lower frequency bands, but the
results are similar at all the bands. For times of one to three minutes, the
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RMS fluctuations are on the order of 2 ×10−4 for all of the bands. For times
of the order of 10 minutes, they are closer to 10−3, or a little more. For one
minute the stability is good. We then made a very long integration, more
than 15 hours to see what the long term stability is like. This is shown in
Figure 4. The average remains constant to a few percent. For this plot,
the antenna was pointed at a fixed direction to the North at a elevation of
30o, and there was no absorber. The weather was clear, and we had some
evidence that the load produced a slightly quieter result, by a factor of about
2, as compared with the background on the sky. What is striking in this plot
is that the output is periodic. Comparison with earlier temperature records
for the electronics room, showed that the period was the same as that of
the room temperature, 10 to 20 minutes. This is the period of the room air
conditioner.

We made one further measurement which was to remove the RFCB and
just look at the sky with a diode detector on the wide band fiber cable coming
into the electronics room. This is shown in Figure 5. In this case the total
input band of 0.5 -12 GHz on the cable is being detected. Sharp spikes that
are probably interference are evident. Between the spikes the gain is stable
to about 1.6×10−3 over an hour which is smaller than at the output of the
RFCB by a factor of three. Encasing the RFCB chassis in foam insulation
to give it a longer time constant could possibly remove that factor of three.

4 Observing strategies

The goal is to have the output fluctuations dominated by the basic radiometer
fluctuations rather than the gain fluctuations. During a mosaic of pointings
to obtain a large map, the autocorrelations for each antenna are recorded as
well as the cross-correlations. The simplest scheme would be just to combine
the autocorrelations for all the antennas to obtain the map for the large scale
and then add it to the cross-correlation image. The main problem will be the
drifting total power offsets in the autocorrelation maps. Averaging over all
the single antenna maps might help average out some of the drifting. On the
other hand, the measurements discussed above suggest that the drifts will
be common. Table 1 below shows how the electronic noise, 2√

Bτ
, depends on

the expected bandwidths and integration times.
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B - τ 2.5 second 60 second 5 minutes
100 MHz 1.3 ×10−4 2.5 ×10−5 1.1 ×10−5

100 kHz 4.0 ×10−3 8.0 ×10−4 4.0 ×10−4

10 kHz 1.3 ×10−2 2.6 ×10−3 1.2 ×10−3

3 kHz 2.3 ×10−2 5.0 ×10−3 2.2 ×10−3

1 kHz 4.0 ×10−2 8.0 ×10−3 3.6 ×10−3

The first row corresponds to the continuum bandwidth. The others are
for the separate channels in spectral line observing with different overall
correlator bandwidth settings. Since the correlator has 1000 channels, the
second row is the individual channel width for the full correlator bandwidth.
It provides a channel width of 20 km/sec for HI. The next row, 10 kHz, is 2
km/sec at HI which is close to the typical thermal width of 100K galactic HI.
The next width, 1 kHz, is close to what might be useful for HI Zeeman line
observing, thermal OH, or long chain molecules like HC5N at, say, 5 GHz.

Table 3 summarizes the fractional gain fluctuations during different time
intervals.

τ ∆G
G

1-3 min 2 ×10−4

5-10 min 2 ×10−3

60 min 5 ×10−3

The last entry for the 60 min case could be lowered to 1.6 ×10−3 if the
observed effects of the periodic temperature changes in the electronics room
could be eliminated as discussed above.

Consider the spectral line observing first. The 100 kHz filters will mostly
only be used for extragalactic HI. Since most galaxies have some tilt with
respect to the line of sight, there usually will be a velocity gradient across
the galaxy that will make the source size small in each spectral channel.
That makes the large scale imaging somewhat easier, even for large galaxies
like M31. The interferometer image in each channel is mostly complete, but
its level with respect to zero will not be correct unless total power data is
added. To get the brightness scaled correctly if no single dish data is added,
one should put a box around each feature and measure the brightness with
respect to the nearby surroundings. This is the same step that one takes to
get the fluxes of point continuum sources, where one fits a synthesized beam
to each source to get its final flux.

10 kHz filters provide a resolution of 2 km/sec, the thermal line width for
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galactic HI at 100K, and are too wide for many other constituents, except
HI recombination lines. 1kHz may be the most useful. That’s 0.2 km/sec for
HI, about 0.3 km/sec for OH (close to the thermal width at 30K), and about
1/2 the thermal line width for the HC5N line at 5 GHz. If we integrate
for 30 minutes with the 1 kHz filters, the fractional thermal noise becomes
1.5×10−3, comparable to or somewhat less than the fractional gain noise of
the system, if the periodic room temperature fluctuation effects are removed.
It is possible that adding up the maps from all of the antennas will average out
some of this gain variation, but the part from the room temperature variation
may be common. In any case, the thermal noise part should also average out,
leaving the gain variation effects to dominate. This argues that a comparison
spectrum needs to be taken after no more than about five minutes. One
simple way to accomplish this would be to point the whole array toward
an off position every five minutes for about five minutes during the mosaic
scanning of the array and subtract the off spectra for each antenna auto
correlation spectrum. Other similar schemes might be developed depending
on the particular spectral line being observed. The overall spectral band
of the spectrometer is narrow enough that it is unlikely that more than one
spectral line will be observed at a time. The 1000 channels that are observing
the line are very many, and it would make the most sense to over-resolve and
then combine channels for better signal/noise later.

The continuum mapping at 100MHz bandwidth presents more of a prob-
lem. Table 1 shows that a 60 second integration with a bandwidth of 100MHz
has a fractional RMS thermal noise of 2.5 ×10−5, much smaller than any frac-
tional gain variations on a scale of more than a minute. Since we have no
rapid Dicke switch or chopping mirror, we need to use something like On
The Fly mapping (OTF) (Emerson, Klein, and Haslam, 1979, A&A, 76, 92)
to produce the large scale maps.

5 OTF Mapping

The basic idea is that a single antenna raster scan of the object under study
will be made with a relatively rapid turn-around of the scan at the end of each
row in a region that is off the source. During the scan across the source, the
receiver power is read out at a rate which corresponds to at least the Nyquist
sampling of the source structure. That is, at least as often as twice per beam
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width. Suppose, for example, that there are ten 2.5 second ”on” observations
across the source with a 25 second ”off” observation at the end of each row.
Each ”on” observation is compared to the ”off” at the turnaround, and so its
thermal noise uncertainty is the 1.3 ×10−4 from table 1. The gain uncertainty
should be about half the 2 ×10−4 listed in the first column of table 2, that is,
about the same as the thermal noise. Reducing the sample time by a factor
of two or more should make it relatively smaller. This example is appropriate
for a 1 GHz observation with the scanning proceeding at 0.6 degrees/second.
At 10 GHz, where the beamwidth is 10 times smaller, we would get the same
times with a much slower scan rate, .06 degrees per second. These numbers
are practical and represent a way of getting the large scale map with little
degradation in sensitivity. For this mode, the scanning to get the large scale
map must be done separately from the interferometric observing. Doing it
on all of the antennas simultaneously and averaging the results will provide
an accurate resulting summed map.

6 Constructing the Map

In principle, one could take the visibilities, V(u,v), found from the single dish
data as discussed above, add them to the visibilities found from the cross
correlations, and get the final map from the Fourier Transform. In practice,
it will work better to combine the two data sets using the MOSMEM program
(Stanimirovic et al, 1999) in Miriad, which produces combined images of all
the channel maps from a joint maximum entropy deconvolution.

7 Summary

The major systematic inaccuracy of the single dish mode will be due to
differential spillover in the ”on” - ”off” comparison. It is difficult to know
in advance how much the reference pointing or the OTF scanning schemes
will be plagued by this. The antenna background is of the order of 12K. The
modulation of this by the scanning across the ground can only be determined
by experiment. It is likely to be of the order of 1% of the expected background
for small scans, that is, of the order of 0.1K. Averaging the offset or scanning
observations over all of the antennas should further reduce this systematic
error.
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Figure 1: Transfer functions for the homogeneous array. The abscissa is
the radial variable in the visibility plane normalized to D/λ, where D is
the antenna diameter. The curve predominately on the left is the transform
of the antenna gain function. The curve predominately on the right is the
function which weights the extrapolation of visibility from the array multi
pointing observations. It is the same function, except that it is centered at
β = D/λ and reverse imaged.
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Figure 2: Sketch of an antenna with a pointing error. Lines to two patches
on the reflector are shown. Visibilities corresponding to this separation, ∆x,
suffer a phase error of (2π/λ)∆x∆θ.
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Figure 3: Total power measurements of the RFCB output for antenna 3H at
12 frequencies ranging from 1 GHz to 9 GHz over ten minutes in one second
averages. The one for 2.33 Ghz shows interference from the XM satellite even
past the absorbing load. Average/RMS is plotted for the whole ten minutes
above and to the right for each panel.
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Figure 4: Total power measurements of the RFCB output for antenna 3H at
5.5GHz over 22 hours in one second averages. Variations at periods of 10 -
20 minutes, the period of the electronics room air conditioner, are evident.
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Figure 5: Total power measurements at just the diode detector in the lab
following the optical fiber for antenna 3H. The entire 0.5 GHz to 12 GHz
optical fiber band is present. The spikes are likely to be interference. The
RMS fluctuations between the spikes are 1.6×10−3 for up to an hour.
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