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Simulations of Narrow-Band Phased-Array Null Formation for the ATA
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ABSTRACT

We describe the minimum variance technique for the deterministic calculation of

complex gains that will place narrow-band nulls in the response of a beam former while

maximizing the signal-to-noise ratio in the source direction. We consider the application

of this technique for the ATA. Nulls are ∼ 100 kHz in frequency and ∼ 10′′ in angular

size at 1.4 GHz. The null angular size decreases with increasing frequency. Multiple

nulls can be easily placed to increase the size of the null in a particular region or to null

widely separated interferers. The nulls can withstand ∼ 10◦ of phase noise and ∼ 5% of

amplitude gain noise. Gains must be updated on timescales less than 100 milliseconds to

maintain nulls. We discuss the relative merits of measuring or simulating the correlation

matrix which is the basis of the calculation.

1. Narrow-Band Null Formation

Adjusting the complex gains in beam formers can produce multiple nulls on the sky while

maintaining gain in the direction of the source. This technique is inherently narrow band. However,

the compact configuration of the Allen Telescope Array sets the difference between narrow-band

and broadband at a large enough bandwidth to be of interest for a variety of interferers. Many

terrestrial communication systems have bandwidths on the order of 10 kHz. Much of the theory for

these techniques has been developed for radar and wireless communication problems (e.g., Godara

1997) but it remains applicable to radio astronomy.

The case that we consider begins with an array of Na antennas at positions bk. Each antenna

receives a signal Vk:

Vk = exp(2πif(t− τ
g
k )), (1)

where τ gk = bk ·n is the geometric delay corresponding to the source direction n. Mixing this signal

with an LO at a frequency f0 and applying delay correction τ
i
k produces an IF signal V

′
k:

V ′
k = exp(2πi(f − f0)t− fτ

g
k − fτ ik)). (2)

The beam former creates a phased output Y that is the complex weighted sum of all V ′
k:

Y =
∑

k

gkexp(2πi(f − f0)t− fτ
g
k − fτ ik)), (3)
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where gk = wkexp(iφk).

The modulus of Y is the beam power pattern R, which can be shown to be:

R =
∑

j

∑

k

wjwkcos(2πf(τ
g
j − τ

g
k + τ ij − τ ik) + φj − φk). (4)

We set τ ik = −τ
g
k (n) so that R is only a function of φk in the direction of the source. This formulation

does not take into account the effects of the primary beam. These could be included with a gain

term that is a function of n.

The nulling problem is to a place a maximum in the direction n0 and nulls in the directions

nl, l = 1, 2, ..., Ni. This can be written in a matrix formulation:

gHA = eT , (5)

where A is an array of steering vectors sl = exp(i2πfτ g) and e is a vector [1, 0, 0, ..., 0] with Ni+1

elements. That is, the response of array is expected to be 1 at n0 and 0 at nl, l > 0. This equation

has solutions for Ni <= Na−1. However, these solutions do not maximize the SNR in the direction

of the source.

With the constraint that the SNR must be maximized, the nulling solution becomes

g =
X−1n0

n0X−1n0
. (6)

X is the correlation matrix for the array. It can either be estimated using the known positions of

the interferers or it can be measured with a correlator. Measuring the correlation matrix introduces

noise that can lead to substantial errors in g for weak interferers (Ellingson & Hampson). Adding

the constraint, reduces the number of interferers that can be eliminated to Na − 2. This algorithm

is known as minimum variance (MV). It is also referred to as Capon’s Beamformer, Constrained

Power Minimization and NAME.

2. Simulations of MV

We describe here simulations of MV using a proposed 350-element ATA configuration. The

configuration is Bock’s k12 1 (Figure 1). The minimum, median and maximum antenna separations

are 11, 254 and 878 m.

Since we are adjusting phase not delay, nulls are inherently narrow band under this scheme.

An order of magnitude estimate of the bandwidth can be estimated ∆ν = τ−1
max. In the case of the

ATA configuration, ∆ν ≈ 350 kHz. We can measure the actual response by placing a null at a given

frequency and then measuring the response of the array at adjacent frequencies in the direction of

the interferer. We demonstrate in Figure 2 that the null can be very deep (in this case -130 dB) but
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that its width is very narrow at these levels1. For the example shown, the width is 100 and 200 kHz

at levels of -40 and -30 dB, respectively. These numbers are representative. Different nulls can be

slightly broader or narrower at these levels, depending on their location on the sky. The frequency

width is independent of the observing frequency. Broad band nulling can be accomplished with a

filter bank approach.

The angular width of the null scales linearly with wavelength. At 1.4 GHz, the -40 and -50 dB

angular widths are on the order of 10′′ and 2′′. For the specific null shown (Figures 3, 4 and 5), the

-30 dB width is on the order of 100′′. But as with the frequency width, this width is sensitive to

the region on the sky surrounding the null. Note that there are several other nulls in the vicinity

of the main null that were not placed by the algorithm.

The width of a null on the sky can be increased by placing multiple nulls in the same region.

Placing five nulls in a cross with arm lengths of 16′′ increases the -40 and -50 dB angular widths

to 80′′ and 60′′, respectively (Figure 6). The width can be increased with the placement of further

nulls.

The effect of the nulling on the main beam shape increases with a number of nulls. For a single

null, the maximum deviation from the optimal beam (after scaling of the peak) in the central 4

arcmin is ∼ 0.2% of the beam peak (Figure 8). For 15 nulls, the maximum deviation in the same

region is ∼ 1% (Figure 9). Even for 300 nulls, the maximum deviation is a 15% sidelobe. In all

cases, the deviation at the beam center is exactly zero. Multiple nulls can be placed across the field

with small effect on the beam pattern in other parts of the sky (Figure 7). Complex null patterns

can be detailed on the sky (Figure 10).

Nulls can also be interpolated between two or more fixed solutions. However, these solutions

are not always accurate, even with second-order interpolation between three solutions (Figure 11).

Proper interpolation should probably be done in the correlation matrix domain.

Perturbations of the solutions indicate the robustness against gain instability. An error of

∼ 10◦ leaves the -40 dB contour essentially unchanged. Increasing the error to ∼ 30◦ leads to a

substantial probability that the null will be destroyed. Thus, the nulls are essentially as stable as

the beam peak. Gradients of phase across the array should correspond to a change in the position of

the interferer. Errors in amplitude gain of about 5% preserve -40 dB contours. Replacing the gains

with unity destroys the null, even though the gains typically deviate by less than 5%. Perhaps,

the significant difficulty that will be encountered with amplitude gains is the variation in gain from

antenna to antenna at angles far from the primary beam.

Update times for the complex gains are set by the changing directions of the source and the

interferers. As an example, we use the actual position of a GPS satellite as a function of time

1Note that our beamformer is normalized to unity in the source direction. Off-source, the mean response is ∼ 1/N ,

which is -25 dB for N = 350
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and show the change in phase and amplitude solutions necessary (Figure 12). In this example, the

source direction remains fixed. But to first order, this configuration is similar to the conditions

for a changing source position but fixed transmitter. The phase and amplitude solutions change

on the same timescale. The structure function plots indicates that the timescale for variation of

the complex gain saturates at approximately 100 milliseconds with a maximum of 0.003 in squared

amplitude and 9 deg2 in phase. The update rates are the same whether are for amplitude and

phase or real and imaginary gains.

The angular width of the nulls and the ability to precisely place multiple nulls substantially

reduce the frequency with which gain solutions must be updated. For a celestial source and a fixed

terrestrial interferer, the interferer will stay within the -40 dB boundary for a few seconds. Update

times are governed by the frequency with which the main beam is updated. In one example, we

placed 50 nulls along the path of a GPS source over ∼ 0.2◦ corresponding to a time interval of

1.5 seconds (Figure 13). The gain phases and amplitudes varied roughly linearly with the sidereal

motion of the source. The null depth at the location of the interferer was always lower than -90

dB. In actual use, one could trade-off between number of nulls, mean suppression and update time.

The behvior of the SNR in the source direction for increasing number of nulls is a stron

argument for a large-N array. Figure 14 shows that for a 350-element array placing 128 nulls only

decreases the SNR to 80% of its maximum. The SNR goes as 1− Nnull

(2Nant−Nnull−2) . Thus, the ATA

can place hundreds of nulls while the VLA could place less than 50.

3. Conclusions

The depth of nulls will be governed by the accuracy with which the array can be phased.

Uncorrected ionospheric and trophospheric phase errors place limits on the depth. Updates of

these terms on timescales of minutes should be sufficient. Amplitude gain errors may be more

important because they are more difficult to control. If the gain errors vary with array pointing

(due to multipath problems), then they will be very difficult to control. These results indicate

that gains must be measurable and controllable at a level of a few percent. Potentially, there are

algorithms that are robust with respect to gain variations, but we have not identified them.

Measuring the correlation matrix has the advantage of measuring the relative antenna gains

at the locations of the interferers (as well as the locations of the interferers). However, this ties up

considerable resources. Furthermore, weak interferers are not easily detected and removed from a

measured correlation matrix. Determining the correlation matrix from the assumed source position

is straightforward and simple computationally. Weak interferers may be treated as strong interferers

and solutions are accurately determined. Potentially, a hybrid approach could be employed in which

weak interferers of known position are added to a measured correlation matrix.

A small array of omni-directional antennas could add substantially to the capacity to estimate

interferer positions. These antennas could perform angle-of-arrival experiments that update inter-
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ferer location tables. This would be particularly valuable for aircraft whose locations cannot be

known a priori. The AOA tests must determine locations to an accuracy ∼ 10′′ at 1.4 GHz. The

positional accuracy of an AOA experiment will be on the order λ
B

1
SNR . DME signals detected with

the RFI monitor at Hat Creek have SNR ∼ 30 dB in 0.1 msec observations. A software correlator

could easily update positions every second with 10′′ if B
λ
= 10 − 100. The RPA could serve as a

useful testbed for such schemes.

Certain implementations of the digital architecture favor a phase-only gain that can be con-

trolled on short timescales. We will investigate phase-only methods in a future memo.

Finally, we note that implementation of the MV algorithm with an FX correlator could allow

for broad band interference mitigation. Gain coefficients could be applied to individual narrow

channels either at the correlator input (following the Fourier transform) or at the correlator output

(following the multiplication).
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Fig. 1.— Antenna positions for ATA k12 1 configuration.
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Fig. 2.— Frequency width of a null.
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Fig. 3.— Angular width of a null. Z-axis is logarithm of beam pattern response.
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Fig. 4.— Contour image showing angular width of a null placed at the origin. Contours are decibels

of beam pattern response.
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Fig. 5.— Image showing one quarter of the sky with a peak and a single null. X- and Y- axes are

direction cosines. Z-axis is logarithm of beam pattern response.
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Fig. 6.— Contour image showing angular width of a null formed from five individual nulls. Contours

are decibels of beam pattern response.
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Fig. 7.— Image showing one quarter of the sky with a peak and 15 nulls. Some of the nulls are

hidden by the viewing angle. X- and Y- axes are direction cosines. Z-axis is logarithm of beam

pattern response.
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Fig. 8.— Deviation of beam pattern at peak with the addition of one null.
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Fig. 9.— Deviation of beam pattern at peak with the addition of 15 nulls.
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Fig. 10.— Complex patterns can be written with nulls.
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Fig. 11.— The trace of nulls for which the complex gains are interpolated between two endpoints.

The interferer moves linearly between the two endpoints but the null does not. Axes are direction

cosines.
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Fig. 12.— Evolution of null parameters for a fixed beam direction and a null tracking a GPS

satellite. The upper two panels show the amplitude and phase solutions for five antennas. The

middle panels show the structure functions for the amplitude and phase solutions for all antennas.

The bottom left panel shows the azimuth and elevation track of the GPS satellite. The bottom

right panel shows the SNR on source as a function of time.
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Fig. 13.— Null formed for the path of a GPS satellite. Fifty individual nulls were placed along the

1.5 second path of the GPS satellite.
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Fig. 14.— SNR at the phase center as a function of number of nulls and number of antennas.
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