Evaluating the TRW and ATA Feeds

David R. DeBoer April 5, 2002

The spillover efficiency may be evaluated as

$$\mathcal{E}_{sp} = \frac{\Omega_{MB}}{\Omega_{A}}$$

where the beam solid angle is

$$\Omega_{A} = \int_{0}^{2\pi\pi} \int_{0}^{2\pi\pi} P_{n}(\theta,\varphi) \sin\theta d\theta d\varphi$$

and the main beam solid angle is

$$\Omega_{MB} = \int_{0}^{2\pi\theta_{MB}} P_n(\theta,\varphi) \sin\theta d\theta d\varphi$$

where θ_{MB} is the main-beam half-angle. As there is incomplete angular data, define a "data" solid angle (assuming that at least the main beam has been measured) as

$$\Omega_{D} = \int_{0}^{2\pi\theta_{D}} P_{n}(\theta,\varphi) \sin\theta d\theta d\varphi$$

where data exist out to θ_D . The beam solid angle is then $\Omega_A = \Omega_D(1+\delta_D)$ where

$$\delta_{D} = \frac{\Omega_{A} - \Omega_{D}}{\Omega_{D}}$$

 δ_D should be a reasonably small quantity for which reasonable bounds may be postulated. If the directivity (*D*) is known, then $\delta_D = 4\pi/(\Omega_D D) - 1$.

The taper efficiency is defined for a symmetric prime-focus reflector as

$$\varepsilon_{t} = \frac{\cot^{2}(\theta_{MB}/2)}{\pi\Omega_{MB}} \Big| \int_{0}^{2\pi} \int_{0}^{\theta_{MB}} \sqrt{P_{n}(\theta, \varphi)} \tan(\theta/2) d\theta d\varphi \Big|^{2}.$$

Note that this assumes constant phase across the aperture. A *phase efficiency* may be defined to account for variations of phase. However, there currently exists no phase data for the TRW feed. A *polarization efficiency* may also be defined to take imperfect cross-polarization into account. Again, no cross-pol data currently exists for the TRW feed.

The *aperture efficiency* is then the product of the spillover, taper, phase and polarization efficiencies

$$\mathcal{E}_{ap} = \mathcal{E}_{sp} \mathcal{E}_{t} \mathcal{E}_{ph} \mathcal{E}_{pol}$$

The desired optimization is for Ae/Tsys, so the quantity to be maximized should be

$$\eta = \frac{\varepsilon_{ap}(\theta_{MB})}{1 + T_{sp}(\theta_{MB})/T_{A'}}$$

where $T_{A'}$ is the contribution of everything but spillover to T_{sys} and $T_{sp}(\theta_{MB})$ is the contribution to T_{sys} due to spillover. Then $A_e/T_{sys} = \eta A_p/T_{A'}$. For the ATA and the chosen illumination angle, the ratio $T_{sp}/T_{A'}$ is about 7% so as a reasonable first order

model, one may express $T_{sp}(\theta_{MB}) = (1 - \varepsilon_{sp})T_{eff}$, where $T_{eff} \sim 16$ K for the nominal ATA values. Therefore,

$$\eta \approx \frac{\varepsilon_{ap}}{1 + 0.4(1 - \varepsilon_{sp})}$$

The analysis below will show both ε_{ap} and η for both the ATA and TRW feeds, where it will also be assumed for comparison that ε_{ph} and ε_{pol} are both equal to unity.

The ATA Feed

The ATA feed is a pyramidal log-periodic feed most recently discussed in ATA Memo 45. The azimuthally averaged beam pattern is shown in Figure 1. The beam pattern is essentially frequency independent over a \sim 22:1 bandwidth.

Figure 1: Azimuthally-averaged ATA pattern

The integrated pattern extending from 140°-180° is about $\delta_D=3\%$ (used as a reference for the TRW analysis) and Table I lists several other parameters of the feed.

Beam solid angle	0.770 rad^2
Directivity	12.1 dBi
For mainbeam angle	42°
Main beam solid angle	0.630 rad^2
Edge taper	-11.1 dB
ε _{sp}	82%
ε _t	87%
ε _{ap}	71%
η	0.66
%beam above +10 dBi	5.9%
%beam above +0 dBi	27.8%

Table I:	Properties	of the	ATA feed.
----------	------------	--------	-----------

The analysis of the TRW feed is based on faxed normalized amplitude patterns extending from $-140^{\circ} - 140^{\circ}$ at 2, 3, 4, 6, 8 GHz. Data for 2, 3, 4 and 8 have been read from the plots and are shown in Figure 2 above.

Since the patterns are incomplete, some integrated power must be assumed in the backward direction. Two values will be assumed: $\delta_D=3\%$ and 15%. The first value is the ATA feed power beyond 140°. The existing data leaves out about 12% of the total solid angle, so the second value of 15% seems a conservative upper limit. Table II lists some other parameters of the TRW feed, with the 2 values per frequency corresponding to the two values of δ_D . Note that the 57° main beam half-angle is used since that is the widest angle for which the cross-pol nulling condition exists for our primary.

	2 GHz	3 GHz	4 GHz	8 GHz
Beam solid angle (rad ²)	1.481 / 1.653	1.126 / 1.259	1.028 / 1.150	1.390 / 1.552
Directivity (dBi)	9.3 / 8.8	10.5 / 10.0	10.9 / 10.4	9.6 / 9.1
For mainbeam angle deg (°)	57	57	57	57
Main beam solid angle (rad^2)	1.218	0.984	0.915	1.237
Edge taper (dB)	-11.6	-9.9	-11.3	-10.7
$\varepsilon_{\rm sp}$ (%)	82 / 74	87 / 78	89 / 80	89 / 80
ε_{t} (%)	89	86	85	80
ε_{ap} (%)	74 / 66	75 / 67	75 / 67	71 / 64
η	.69 / .60	0.71 / 0.61	0.72 / 62	68 / 59
%beam above +10 dBi	0	0.9 / 0.00	1.6 / 0.6	0
%beam above +0 dBi	50.3 / 47.7	44.5 / 42.3	44.9 / 42.4	36.2 / 34.8

 Table II: Properties of the TRW feed

Comparison

The comparison is a bit problematic due to the uncertainty of the value of δ_D for the TRW feed. For a value of $\delta_D = 10\%$, the two feeds have almost identical performance. Figure 3 shows ε_{ap} and Figure 4 shows η as a function of θ_{MB} for the two feeds, where the 3% value at 4 GHz and 15% value at 8 GHz are used for the limits for the TRW feed, since they provide the broadest range. The two vertical lines are at 42° and 57°.

Figure 5 and 6 show the aperture efficiency and η (again, with assumed perfect phase and cross-pol efficiencies), assuming the 42° and 57° half angles for the ATA and TRW feeds respectively. The blue range is the 3% and 15% span and the yellow line is the ATA feed.

Frequency [GHz]

In terms of implementing either feed in the ATA configuration, the primary antenna remains the same and the subreflector changes to accommodate the different design. Figure 7 shows the two different geometries, with the TRW arrangement in red and the ATA feed in black. Table III lists the values

Table III: Offset Gregorian parameters for the two feeds

Reading parameters from greg42.des:	Reading parameters from greg57.des:	
primary aperture diameter $(D) = 6.090$	primary aperture diameter $(D) = 6.090$	
primary focal distance (f) = 2.436 (f/D= 0.400)	primary focal distance (f) = 2.436 (f/D= 0.400)	
height of midpoint aperture (yc) = 2.740 (yc/D= 0.450)	height of midpoint aperture $(yc) = 2.740 (yc/D=0.450)$	
secondary subtended angle (ThetaH) = 42.000	secondary subtended angle (ThetaH) = 57.000	
target secondary size = 2.400	target secondary size $= 2.400$	
For the ellipsoid:		
2c = 1.0430	2c = 0.7800	
2a = 3.3245	2a = 2.9776	
2b = 3.1567	2b = 2.8736	
vertex = 2.1838	vertex = 1.8788	
xi = 0.3071	xi = 0.4344	
zeta = 1.1250	zeta = 1.1250	
e = 0.3137	e = 0.2620	
beta = 29.7630	beta = 60.3100	
alpha = 53.9243	alpha = 89.6188	
equivalent $f/D = 0.6513$	equivalent $f/D = 0.4604$	
Sub-reflector size:		
T-B size in primary coordinates: 2.47531	T-B size in primary coordinates: 2.47119	
L-R size in primary coordinates: 2.37106	L-R size in primary coordinates: 2.38649	
Geometrical mean size: 2.399	Geometrical mean size: 2.399	
Height: 1.990	Height: 1.962	
Depth: 0.541	Depth: 0.637	

Focal points:		
F1 is at (y1,z1): -0.518 0.905	F1 is at (y1,z1): -0.678 0.386	
F0 is at (y0,z0): -0.843 0.614	F0 is at (y0,z0): -0.780 0.005	
The center of the subreflector is at:		
(y0,z0) 0.000 1.838	(y0,z0) 0.000 1.389	
(y1,z1) -1.270 -0.772	(y1,z1) -1.358 -0.825	
Profile of main offset paraboloid with center at $y_1 = 2.740$		
Top point (5.7853,-0.9991) Bottom point (-0.3045,2.4264)	Top point (5.7853,-0.9991) Bottom point (-0.3045,2.4264)	
Angle of face = -29.3578	Angle of face = -29.3578	
Depth: 0.8294 m	Depth: 0.8294 m	
Primary top-to-bottom distance = 6.987117	Primary top-to-bottom distance = 6.987117	

Conclusions

The TRW feed does look quite promising; however we lack enough information to fully characterize it. The data we have spans only 2 octaves, the feed for the ATA is required to work over a 22:1 bandwidth. The ground plane portion of the TRW feed may not be made arbitrarily large to accommodate lower frequencies, since at some point it will occlude the beam waist of the Gregorian system, however it appears that sizes up to about 60-80 cm may be accommodated with the existing design.

Efficiency, impedance match, ohmic loss and cross-polarization all must maintain good performance across 4.5 octaves simultaneously. To fully characterize this feed, we therefore need to have these parameters fully evaluated over the 0.5 - 11.2 GHz ATA frequency range, as well as drawings of the feed to evaluate integration with the receiver and cryogenic package.