ATA memo 79 : 2009-June-01 MCHW

Extended ATA telescope with outrigger stations

Melvyn Wright, Rick Forster, Jack Welch, & Don Backer

Radio Astronomy laboratory, University of California, Berkeley, CA, 94720

ABSTRACT

The ATA 42 with outrigger antennas provides a unprecedented opportunity to develop essential technology for SSA and for SKA. The ATA 42 can image, and form multiple beams within a wide FOV; cross correlation with outrigger antennas produces a pencil beam over the full FOV of the 6m antennas.

Adding outrigger stations to the ATA provides some long baselines and higher angular resolution. With only a few long baselines, the high resolution data has low weight resulting in a composite synthesized beam of high resolution sitting on top of a lower resolution plateau from the ATA-42 station beam.

A high resolution beam without the low resolution plateau can be obtained by downweighting the ATA-42 stations using uniform weighting at the cost of reduced sensitivity. Good HA coverage is required to obtain these beams. With only 2 HA coverage the synthesized beams have higher sidelobes, and confusion in complex fields of view. The fitted beam size, flux and brightness sensitivity, and sidelobe levels are tabulated.

For position determination of high brightness targets, the synthesized beam sidelobe levels are less important. To realize the full potential as a Phased Array Passive Radar Tracking System some key technical developments need to be completed.

1. INTRODUCTION

The current ATA-42 antenna array has a maximum antenna separation of 323 m giving an angular resolution $\sim 220 \times 110''$ at 1430 MHz with equal (natural) weighting of the uv data. The angular resolution can be enhanced by uniform weighting the uv data giving an angular resolution $\sim 130 \times 80''$ at the cost of reduced sensitivity.

Adding existing BIMA-A stations to the ATA-42 provides a maximum antenna separation of 1872 m giving much higher angular resolution. With only a few long baselines, the high resolution data has low overall weight resulting in a composite synthesized beam with a high resolution sitting on top of a lower resolution plateau from the ATA-42 station beam.

The greatly enhaced angular resolution is attractive for locating high brightness targets and subtracting strong compact sources to reduce confusion in complex fields of view. In this memo we analyze the beam size, flux and brightness sensitivity, and sidelobe levels.

2. Results

ATA observations were simulated with the MIRIAD using a standard imaging scripts

(**\$MIR/demo/ata/mfs.csh)** which generates uv data for an antenna configuration and images a point source. The beam size, flux and brightness sensitivity, and sidelobe levels are tabulated. Figure 1 shows the ATA 42 antenna array configuration.

Seven stations from the BIMA A-configuration were added to the ATA-42 antenna array. The antenna positions and station names are listed in Table 1, below. Figure 2 shows the ATA 42 antenna array configuration + 7 BIMA A-configuration stations.

With only a few long baselines, the high resolution data has low weight resulting in a composite synthesized beam of high resolution sitting on top of a lower resolution plateau from the ATA-42 station beam.

A high resolution beam without the low resolution plateau can be obtained by down-weighting the ATA-42 stations using uniform weighting of the uv data, at the cost of reduced sensitivity.

Good HA coverage is required to obtain these beams. With only 2 HA coverage the synthesized beams have higher sidelobes, which will result in confusion in complex fields of view.

The results are tabulated in Table 2 below for natural, robust and uniform weighting of the uv data.

For position determination of high brightness targets, the synthesized beam sidelobe levels are less important.

TABLE 1.

Miriad style antennas file # Note: file must contain x y z followed by antenna name. # NOTE: x y z are N, E and Ht in meters (rotated 1deg - refant 4L) # first baseline soln with fx8x8 08aug07 data # Bima A-array stns in ATA coord system (relative to M) - jrf 26may09

#	Ν	E	Н	\mathtt{stn}	ant	date ref
	-74.7322	65.9487	0.5470	1a	1	103008/1gx
	-91.5262	100.1497	0.3190	1b	2	103008/1gx
	-155.3822	92.5007	2.1540	1c	3	103008/1gx
	-151.5852	68.8337	0.5400	1d	4	103008/1gx
	-140.7712	54.5077	0.2180	1e	5	103008/1gx
	-141.7412	25.1097	0.5300	1f	6	103008/1gy
	-121.3972	24.5387	0.3880	1g	7	072608/2bx
	-106.4032	-0.3663	0.5060	1h	8	102708/1gx
	-61.6332	-10.7393	0.5820	1j	9	103008/1gx
	-74.5942	41.6047	0.5040	1k	10	041109/2ax
	4.9998	92.3617	0.5220	2a	11	103008/1gx
	-5.4882	115.2937	0.5140	2b	12	103008/1gx
	-33.0312	110.7317	0.4010	2c	13	103008/1gx
	-54.3992	150.1317	0.4420	2d	14	103008/1gy
	-51.6112	167.4497	0.4280	2e	15	103008/1gx
	-37.8892	24.0867	0.4060	2f	16	041109/2ax
	-39.8012	-4.9783	0.4870	2g	17	103008/1gx
	-27.5362	2.3737	0.4190	2h	18	103008/1gx
	-12.5082	14.5057	0.4750	2j	19	041109/2ax
	-6.7622	24.0937	0.5290	2k	20	103008/1gx
	-6.1312	49.0357	0.4100	21	21	103008/1gx
	-7.8652	80.6387	0.2470	2m	22	103008/1gy
	37.4718	164.8887	0.3300	Зc	23	103008/1gx
	59.8968	118.5897	0.2910	3d	24	103008/1gx
	48.8948	92.0717	0.2350	3e	25	012109/2ax
	36.6258	76.2487	0.3430	Зf	26	103008/1gy
	34.1948	66.7167	0.3470	Зg	27	103008/1gx
	43.6418	69.4807	1.1180	3h	28	103008/1gx
	81.9548	124.0407	0.2570	3j	29	041109/2ax
	101.7978	95.1997	0.1540	31	30	041109/2ax
	66.8678	191.1037	0.3120	4e	31	080508/2by

85.9978	145.2877	0.2240	4f	32	011709	/2ay
105.5658	117.5337	0.2210	4g	33	103008	/1gx
108.7028	104.3997	0.1750	4h	34	103008	/1gy
128.8198	146.0937	0.3160	4j	35	103008	/1gx
102.8358	158.8117	0.1570	4k	36	041109	/2ax
102.6038	169.6517	0.0040	41	37	103008	/1gx
94.0628	246.1947	0.3060	5b	38	102708	/1gx
76.9358	252.5867	0.3320	5c	39	103008	/1gy
68.6718	263.2077	0.5060	5e	40	103008	/1gy
63.2778	236.3717	0.3350	5g	41	012109	/2ax
76.3388	239.1747	0.3150	5h	42	012109	/2ax
-68.5882	-17.3662	0.0000	740W			
-94.4728	664.9709	0.0000	1500E			
461.2059	303.2300	0.0000	1740N			
-148.8638	886.2124	0.0000	2220E			
755.4718	138.2629	0.0000	2700N			
927.9476	137.9554	0.0000	3270N			
942.6535	-634.2028	0.0000	4320N			
N	E	Н	stn	ant	date	ref

#

– 4 –

– 5 –

TABLE 2.

ATA	A S	ingle Field MFS Imaging	
config	=	ata-42+	
dec	=	30	
harange	=	-1,1,.1 hours	
nchan	=	1	
select	=	-shadow(6.1)	
freq	=	1.42	
imsize	=	256	
systemp	=	40	
jyperk	=	150	
bandwidth	=	100 MHz	

DEC	HA	Rms	Beam	Tb_rms	Sid	elobe[%]	uvrange	weighting
deg.	hrs.	[mJy]	[arcsec]	[mK]	Rms,Max,Min		[m]		
30	-1,1,.1	0.12	220 x 110	3.0	1.0	8.7	-5.5	9.6 323	sup=0
30	-1,1,.1	0.13	191 x 94	4.4	0.7	7.7	-12.5	9.6 323	robust=0.5
30	-1,1,.1	0.16	168 x 79	7.2	0.8	10.4	-22.0	9.6 323	uniform
30	-4,4,.1	0.06	213 x 124	1.4	0.5	4.5	-5.4	6.6 323	sup=0
30	-4,4,.1	0.06	175 x 102	2.0	0.4	3.4	-12.3	6.6 323	robust=0.5
30	-4,4,.1	0.10	131 x 80	5.7	0.5	10.0	-24.5	6.6 323	uniform
30	-1,1,.1	0.10	92 x 71	9.2	1.6	20.4	-10.6	9.6 1872	sup=0
30	-1,1,.1	0.11	65 x 52	19.4	1.6	33.9	-17.3	9.6 1872	robust=0.5
30	-1,1,.1	0.26	32 x 20	241.4	2.4	67.0	-42.1	9.6 1872	uniform
30	-4,4,.1	0.05	91 x 75	4.4	1.0	22.5	-5.8	6.6 1872	sup=0
30	-4,4,.1	0.06	65 x 55	10.0	1.1	34.4	-11.8	6.6 1872	robust=0.5
30	-4,4,.1	0.15	30 x 18	158.2	0.9	12.4	-19.2	6.6 1872	uniform
	DEC deg. 30 30 30 30 30 30 30 30 30 30 30 30 30	DEC HA deg. hrs. 30 -1,1,.1 30 -1,1,.1 30 -1,1,.1 30 -1,1,.1 30 -4,4,.1 30 -4,4,.1 30 -4,4,.1 30 -1,1,.1 30 -1,1,.1 30 -1,1,.1 30 -4,4,.1 30 -4,4,.1 30 -4,4,.1	DEC HA Rms deg. hrs. [mJy] 30 -1,1,.1 0.12 30 -1,1,.1 0.13 30 -1,1,.1 0.13 30 -1,1,.1 0.16 30 -4,4,.1 0.06 30 -4,4,.1 0.06 30 -1,1,.1 0.10 30 -1,1,.1 0.11 30 -1,1,.1 0.26 30 -4,4,.1 0.05 30 -4,4,.1 0.05 30 -4,4,.1 0.15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DECHARmsBeamTb_rmsdeg.hrs. $[mJy]$ $[arcsec]$ $[mK]$ 30 $-1,1,.1$ 0.12 220×110 3.0 30 $-1,1,.1$ 0.13 191×94 4.4 30 $-1,1,.1$ 0.16 168×79 7.2 30 $-4,4,.1$ 0.06 213×124 1.4 30 $-4,4,.1$ 0.06 175×102 2.0 30 $-4,4,.1$ 0.10 131×80 5.7 30 $-1,1,.1$ 0.10 92×71 9.2 30 $-1,1,.1$ 0.11 65×52 19.4 30 $-1,1,.1$ 0.26 32×20 241.4 30 $-4,4,.1$ 0.05 91×75 4.4 30 $-4,4,.1$ 0.15 30×18 158.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DECHARmsBeamTb_rmsSidelobe[5]deg.hrs. $[mJy]$ $[arcsec]$ $[mK]$ Rms,Max,Mi30 $-1,1,.1$ 0.12 220×110 3.0 1.0 8.7 30 $-1,1,.1$ 0.13 191×94 4.4 0.7 7.7 30 $-1,1,.1$ 0.16 168×79 7.2 0.8 10.4 30 $-4,4,.1$ 0.06 213×124 1.4 0.5 4.5 30 $-4,4,.1$ 0.06 175×102 2.0 0.4 3.4 30 $-4,4,.1$ 0.10 131×80 5.7 0.5 10.0 30 $-1,1,.1$ 0.11 65×52 19.4 1.6 33.9 30 $-1,1,.1$ 0.26 32×20 241.4 2.4 67.0 30 $-4,4,.1$ 0.05 91×75 4.4 1.0 22.5 30 $-4,4,.1$ 0.15 30×18 158.2 0.9 12.4	DECHARmsBeamTb_rmsSidelobe [%]deg.hrs. $[mJy]$ $[arcsec]$ $[mK]$ Rms,Max,Min30 $-1,1,.1$ 0.12 220×110 3.0 1.0 8.7 -5.5 30 $-1,1,.1$ 0.13 191×94 4.4 0.7 7.7 -12.5 30 $-1,1,.1$ 0.16 168×79 7.2 0.8 10.4 -22.0 30 $-4,4,.1$ 0.06 213×124 1.4 0.5 4.5 -5.4 30 $-4,4,.1$ 0.06 175×102 2.0 0.4 3.4 -12.3 30 $-4,4,.1$ 0.10 131×80 5.7 0.5 10.0 -24.5 30 $-1,1,.1$ 0.10 92×71 9.2 1.6 20.4 -10.6 30 $-1,1,.1$ 0.10 92×71 9.2 1.6 20.4 -10.6 30 $-1,1,.1$ 0.10 92×71 9.2 1.6 20.4 -10.6 30 $-1,1,.1$ 0.10 32×20 241.4 2.4 67.0 -42.1 30 $-4,4,.1$ 0.05 91×75 4.4 1.0 22.5 -5.8 30 $-4,4,.1$ 0.06 65×55 10.0 1.1 34.4 -11.8 30 $-4,4,.1$ 0.15 30×18 158.2 0.9 12.4 -19.2	DECHARmsBeamTb_rmsSidelobe [%]uvrangedeg.hrs. $[mJy]$ $[arcsec]$ $[mK]$ Rms,Max,Min $[m]$ 30 $-1,1,.1$ 0.12 220×110 3.0 1.0 8.7 -5.5 9.6 30 $-1,1,.1$ 0.13 191×94 4.4 0.7 7.7 -12.5 9.6 30 $-1,1,.1$ 0.16 168×79 7.2 0.8 10.4 -22.0 9.6 30 $-4,4,.1$ 0.06 213×124 1.4 0.5 4.5 -5.4 6.6 30 $-4,4,.1$ 0.06 175×102 2.0 0.4 3.4 -12.3 6.6 30 $-4,4,.1$ 0.10 131×80 5.7 0.5 10.0 -24.5 6.6 30 $-1,1,.1$ 0.10 92×71 9.2 1.6 20.4 -10.6 9.6 30 $-1,1,.1$ 0.10 92×71 9.2 1.6 20.4 -10.6 9.6 1872 30 $-1,1,.1$ 0.11 65×52 19.4 1.6 33.9 -17.3 9.6 1872 30 $-4,4,.1$ 0.05 91×75 4.4 1.0 22.5 -5.8 6.6 1872 30 $-4,4,.1$ 0.06 65×55 10.0 1.1 34.4 -11.8 6.6 1872 30 $-4,4,.1$ 0.15 30×18 158.2 0.9 12.4 -19.2 6.6

3. Discussion

Figure 3 shows the uv coverage for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -1,1 hours. Large gaps in the uv coverage result in high sidelobes in the synthesized beam.

Figure 4 shows the synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -1,1 hours and robust weighting of the uv data. The synthesized beam shows the high resolution beam resulting from the long baselines to the outrigger stations, sitting on the lower resolution beam from the ATA 42 antenna array. With limited HA coverage, the high sidelobe level results in a complex synthesized beam pattern with several peaks.

Figure 5 shows the synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -1,1 hours and uniform weighting of the uv data. Uniform weighting of the uvdata down weights the ATA 42-antenna data, and attenuates the lower resolution beam from the ATA 42 antenna array. With limited HA coverage, the high sidelobe level still results in a complex synthesized beam pattern with several peaks.

Extending the observations over 8 hours fills in much more of the uv plane and reduces the sidelobe level. Figure 6 shows the uv coverage for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -4,4 hours.

Figure 7 shows the synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -4,4 hours and robust weighting of the uv data. The synthesized beam shows the high resolution beam resulting from the long baselines to the outrigger stations, sitting on the lower resolution beam from the ATA 42 antenna array. With good HA coverage, the sidelobe level is reduced and the synthesized beam pattern has a single well defined peak.

Figure 8 shows the synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -4,4 hours and uniform weighting of the uv data. Uniform weighting of the uvdata down weights the ATA 42-antenna data, and attenuates the lower resolution beam from the ATA 42 antenna array, leaving a high resolution beam with $\sim 12\%$ sidelobes.

3.1. Station beamforming

The ATA-42 antenna data could be combined in a beamformer and the data from the resulting station beam cross correlated with the seven outrigger antennas. This is similar to the SKA station beam approach for arrays with large numbers of antennas, and has the advantage of greatly reducing the number of cross correlations and the data rate from the correlator.

Cross correlating a phased array station beam (ATA-42, SKA stations etc) with individual antennas on longer baselines provides an anti-aliasing feature by attenuating signals outside the phased array voltage pattern. There is still confusion from the phased array beam sidelobes, of course, but with on-line control of the weighting in the phased array, or with full fast dump correlation, there are lots of things we can do to suppress, and deconvolve unwanted aliased responses to reduce confusion. We can develop these techniques on the ATA telescope.

There are several advantages if all the cross correlations of individual antennas can be preserved. (i) The field of view is then the full primary beam of the individual antennas. (ii) The primary beam of the individual antennas is well defined, whereas the primary beam for the station beam depends on the direction of the source, and the weighting of the antennas contributing to the station beam. (iii) The uv coverage with all cross correlations is much better. Each of the outrigger antennas paints a broad swath across the uv plance with the diameter of the ATA-42 antenna configuration.

3.2. Phased Array Passive Radar Tracking System

The ATA 42 with outrigger antennas provides a unprecedented opportunity to develop essential technology for SSA and for SKA. The ATA 42 can image, and form multiple beams within a wide FOV; cross correlation with outrigger antennas produces a pencil beam over the full FOV of the 6m antennas.

1. Outrigger antennas on the ATA-42 provide antenna separations up to 1800 m and much higher resolution for tracking satellites.

2. The beamformer can have multiple phased array targets at multiple frequencies.

3. A fast dump correlator with multiple phase centers provides much better uvcoverage and hence reduction of confusion in a cluttered FOV – better for SKA imaging and for SSA.

4. Passive radar, using some antennas pointing on the target sources and some pointed at powerful satellites to provide reference phase screens for the ATA-42 phased array.

5. The phased ATA-42 array voltage pattern can be weighted to produce nulls. Cross correlation with the outrigger antennas preserves these nulls.

Some key technical developments needed, and partially in place :

- 10 GbE digital output from phased array.
- station beamforming by feeding the digital output from phased array into the correlator.
- long delays and fast fringe rate tracking for low orbit targets.
- cross correlation at multiple phase centers.
- real time DSP and imaging.
- system integration.

3.3. Software correlation

With access to digital voltage data in software, at appropriately narrow bandwidth, one can likely see all GPS signals simultaneously albeit with confused phasing in sidelobes that one would need to learn about before any use could be made of such a sensor. We are doing hemispheric imaging with the Epoch of Re-ionization telescope (PAPER), but there we have simple hemispheric, single-lobe beam pattern. We can see the entire ORBCOM constellation of satellites at 137 MHz.

Fig. 1.— ATA 42 antenna array configuration.

Fig. 2.— ATA 42 antenna array configuration + 7 BIMA A-configuration stations.

Fig. 3.— uv coverage for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -1,1 hours. Large gaps in the uv coverage result in high sidelobes in the synthesized beam.

I ata-42+BIMA-A.30.uv 1.4210 GHz

Fig. 4.— Synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -1,1 hours and robust weighting of the uv data. The synthesized beam shows the high resolution beam resulting from the long baselines to the outrigger stations, sitting on the lower resolution beam from the ATA 42 antenna array. With limited HA coverage, the high sidelobe level results in a complex synthesized beam pattern with several peaks.

Fig. 5.— Synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -1,1 hours and uniform weighting of the uv data. Uniform weighting of the uvdata down weights the ATA 42-antenna data, and attenuates the lower resolution beam from the ATA 42 antenna array. With limited HA coverage, the high sidelobe level still results in a complex synthesized beam pattern with several peaks.

I ata-42+BIMA-A.30.uv 1.4210 GHz

Fig. 6.— uv coverage for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -4,4 hours. Extending the observations over 8 hours fills in much more of the uv plane.

Fig. 7.— Synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -4,4 hours and robust weighting of the uv data. The synthesized beam shows the high resolution beam resulting from the long baselines to the outrigger stations, sitting on the lower resolution beam from the ATA 42 antenna array. With good HA coverage, the sidelobe level is reduced and the synthesized beam pattern has a single well defined peak.

Fig. 8.— Synthesized beam for ATA 42 configuration + 7 BIMA A-configuration stations with HA range -4,4 hours and uniform weighting of the uv data. Uniform weighting of the uvdata down weights the ATA 42-antenna data, and attenuates the lower resolution beam from the ATA 42 antenna array, leaving a high resolution beam with $\sim 12\%$ sidelobes.